from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from tools.visit_webpage import VisitWebpageTool from Gradio_UI import GradioUI import arxiv from transformers import pipeline # Initialize a summarization pipeline using a pre-trained model. summarizer = pipeline("summarization") def _search_arxiv(query: str, max_results: int = 5) -> list[dict[str, str | list[str]]]: """ Search for research articles on arXiv based on the given query. Args: query (str): The search query. max_results (int): Maximum number of results to retrieve. Returns: list[dict[str, str | list[str]]]: Each dict contains title, authors, summary, publication date, and URL. """ search = arxiv.Search( query=query, max_results=max_results, sort_by=arxiv.SortCriterion.SubmittedDate ) results = [] for result in search.results(): results.append({ 'title': result.title, 'authors': [author.name for author in result.authors], 'summary': result.summary, 'published': result.published.strftime("%Y-%m-%d"), 'url': result.entry_id }) return results def _summarize_text(text: str) -> str: """ Summarize the provided text using the Hugging Face summarization pipeline. Args: text (str): The text to summarize. Returns: str: The summarized text. """ # For longer texts, consider chunking before summarizing. summary = summarizer(text, max_length=130, min_length=30, do_sample=False) return summary[0]['summary_text'] @tool def personalized_research_assistant(query: str) -> str: """A tool that fetches relevant articles from arxiv and provides the information. Args: query: The research query to search for in arxiv. """ response = "" articles = _search_arxiv(query) for idx, article in enumerate(articles): response += f"\nArticle {idx+1}:\n" response += f"\nTitle: {article['title']}\n" response += f"Authors: {', '.join(article['authors'])}\n" response += f"Published on: {article['published']}\n" response += f"URL: {article['url']}\n" response += "Abstract Summary:\n" response += f"{summarize_text(article['summary'])}\n" response += "-" * 80 return response @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer, image_generation_tool, DuckDuckGoSearchTool(), VisitWebpageTool(), get_current_time_in_timezone], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()