|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
class Residual(nn.Module): |
|
def __init__(self, fn): |
|
super().__init__() |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
return self.fn(x, **kwargs) + x |
|
|
|
class PreNorm(nn.Module): |
|
def __init__(self, dim, fn): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(dim) |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
return self.fn(self.norm(x), **kwargs) |
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, hidden_dim): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(dim, hidden_dim), |
|
nn.GELU(), |
|
nn.Linear(hidden_dim, dim) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, heads=8): |
|
super().__init__() |
|
self.heads = heads |
|
self.scale = dim ** -0.5 |
|
|
|
self.to_qkv = nn.Linear(dim, dim * 3, bias=False) |
|
self.to_out = nn.Linear(dim, dim) |
|
|
|
def forward(self, x, mask = None): |
|
b, n, _, h = *x.shape, self.heads |
|
qkv = self.to_qkv(x) |
|
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h) |
|
|
|
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale |
|
|
|
if mask is not None: |
|
mask = F.pad(mask.flatten(1), (1, 0), value = True) |
|
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' |
|
mask = mask[:, None, :] * mask[:, :, None] |
|
dots.masked_fill_(~mask, float('-inf')) |
|
del mask |
|
|
|
attn = dots.softmax(dim=-1) |
|
|
|
out = torch.einsum('bhij,bhjd->bhid', attn, v) |
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
out = self.to_out(out) |
|
return out |
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, dim, depth, heads, mlp_dim): |
|
super().__init__() |
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append(nn.ModuleList([ |
|
Residual(PreNorm(dim, Attention(dim, heads = heads))), |
|
Residual(PreNorm(dim, FeedForward(dim, mlp_dim))) |
|
])) |
|
|
|
def forward(self, x, mask=None): |
|
for attn, ff in self.layers: |
|
x = attn(x, mask=mask) |
|
x = ff(x) |
|
return x |
|
|
|
class CViT(nn.Module): |
|
def __init__(self, image_size=224, patch_size=7, num_classes=2, channels=512, |
|
dim=1024, depth=6, heads=8, mlp_dim=2048): |
|
super().__init__() |
|
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size' |
|
|
|
self.features = nn.Sequential( |
|
|
|
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=32), |
|
nn.ReLU(), |
|
nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=32), |
|
nn.ReLU(), |
|
nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=32), |
|
nn.ReLU(), |
|
nn.MaxPool2d(kernel_size=2, stride=2), |
|
|
|
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=64), |
|
nn.ReLU(), |
|
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=64), |
|
nn.ReLU(), |
|
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=64), |
|
nn.ReLU(), |
|
nn.MaxPool2d(kernel_size=2, stride=2), |
|
|
|
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=128), |
|
nn.ReLU(), |
|
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=128), |
|
nn.ReLU(), |
|
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=128), |
|
nn.ReLU(), |
|
nn.MaxPool2d(kernel_size=2, stride=2), |
|
|
|
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=256), |
|
nn.ReLU(), |
|
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=256), |
|
nn.ReLU(), |
|
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=256), |
|
nn.ReLU(), |
|
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=256), |
|
nn.ReLU(), |
|
nn.MaxPool2d(kernel_size=2, stride=2), |
|
|
|
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=512), |
|
nn.ReLU(), |
|
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=512), |
|
nn.ReLU(), |
|
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=512), |
|
nn.ReLU(), |
|
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(num_features=512), |
|
nn.ReLU(), |
|
nn.MaxPool2d(kernel_size=2, stride=2) |
|
) |
|
|
|
num_patches = (image_size // patch_size) ** 2 |
|
self.max_sequence_length = num_patches+1 |
|
patch_dim = channels * patch_size ** 2 |
|
|
|
self.patch_size = patch_size |
|
|
|
self.pos_embedding = nn.Parameter(torch.randn(1, self.max_sequence_length, dim)) |
|
self.patch_to_embedding = nn.Linear(patch_dim, dim) |
|
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) |
|
self.transformer = Transformer(dim, depth, heads, mlp_dim) |
|
|
|
self.to_cls_token = nn.Identity() |
|
|
|
self.mlp_head = nn.Sequential( |
|
nn.Linear(dim, mlp_dim), |
|
nn.ReLU(), |
|
nn.Linear(mlp_dim, num_classes) |
|
) |
|
|
|
def forward(self, img, mask=None): |
|
p = self.patch_size |
|
x = self.features(img) |
|
y = rearrange(x, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) |
|
|
|
y = self.patch_to_embedding(y) |
|
cls_tokens = self.cls_token.expand(y.shape[0], -1, -1) |
|
x = torch.cat((cls_tokens, y), dim=1) |
|
|
|
x += self.pos_embedding[:, :x.size(1)] |
|
x = self.transformer(x, mask) |
|
x = self.to_cls_token(x[:, 0]) |
|
|
|
return self.mlp_head(x) |