Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
from tqdm import tqdm | |
from mtcnn import MTCNN | |
def normalize_frame(frame, mean, std): | |
frame = frame / 255.0 | |
mean = np.array(mean).reshape(1, 1, 3) | |
std = np.array(std).reshape(1, 1, 3) | |
normalized_frame = (frame - mean) / std | |
return normalized_frame | |
def detect_faces_in_video(video_path, output_dir, padding_percentage=0.3, | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], | |
full_detection_interval=10): | |
os.makedirs(output_dir, exist_ok=True) | |
detector = MTCNN() | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
raise Exception(f"Error: Unable to open video file {video_path}") | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_count = 0 | |
cropped_faces = [] | |
trackers = [] | |
with tqdm(total=total_frames, desc="Extracting faces", unit="frame") as pbar: | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
if frame is None: | |
print(f"[WARNING] Empty frame at {frame_count}") | |
continue | |
if frame_count % full_detection_interval == 0: | |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
faces = detector.detect_faces(rgb_frame) | |
trackers = [] | |
for i, face in enumerate(faces): | |
confidence = face['confidence'] | |
if confidence < 0.85: | |
continue | |
x, y, w, h = face['box'] | |
if w < 50 or h < 50: | |
continue | |
padding = max(1, int(min(w, h) * padding_percentage)) | |
x1 = max(0, x - padding) | |
y1 = max(0, y - padding) | |
x2 = min(rgb_frame.shape[1], x + w + padding) | |
y2 = min(rgb_frame.shape[0], y + h + padding) | |
cropped_face = frame[y1:y2, x1:x2] | |
if cropped_face.size == 0: | |
continue | |
resized_cropped_face = cv2.resize(cropped_face, (224, 224)) | |
normalized_face = normalize_frame(resized_cropped_face, mean, std) | |
face_filename = f"frame_{frame_count:05d}_face_{i}.npy" | |
face_path = os.path.join(output_dir, face_filename) | |
np.save(face_path, normalized_face) | |
cropped_faces.append(face_path) | |
tracker = cv2.TrackerCSRT_create() | |
tracker.init(frame, (x, y, w, h)) | |
trackers.append(tracker) | |
else: | |
for i, tracker in enumerate(trackers): | |
success, box = tracker.update(frame) | |
if success: | |
x, y, w, h = [int(v) for v in box] | |
padding = max(1, int(min(w, h) * padding_percentage)) | |
x1 = max(0, x - padding) | |
y1 = max(0, y - padding) | |
x2 = min(frame.shape[1], x + w + padding) | |
y2 = min(frame.shape[0], y + h + padding) | |
cropped_face = frame[y1:y2, x1:x2] | |
if cropped_face.size == 0: | |
continue | |
resized_cropped_face = cv2.resize(cropped_face, (224, 224)) | |
normalized_face = normalize_frame(resized_cropped_face, mean, std) | |
face_filename = f"frame_{frame_count:05d}_track_{i}.npy" | |
face_path = os.path.join(output_dir, face_filename) | |
np.save(face_path, normalized_face) | |
cropped_faces.append(face_path) | |
frame_count += 1 | |
pbar.update(1) | |
cap.release() | |
return cropped_faces | |