Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,45 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import torchvision.transforms as T
|
| 4 |
+
from PIL import Image
|
| 5 |
|
| 6 |
+
# Assuming the necessary packages (featup, clip, etc.) are installed and accessible
|
| 7 |
+
from featup.util import norm, unnorm
|
| 8 |
+
from featup.plotting import plot_feats
|
| 9 |
+
|
| 10 |
+
# Setup - ensure the repository content is accessible in the environment
|
| 11 |
+
|
| 12 |
+
# Streamlit UI
|
| 13 |
+
st.title("Feature Upsampling Demo")
|
| 14 |
+
|
| 15 |
+
# File uploader
|
| 16 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
| 17 |
+
if uploaded_file is not None:
|
| 18 |
+
image = Image.open(uploaded_file).convert("RGB")
|
| 19 |
+
|
| 20 |
+
# Image preprocessing
|
| 21 |
+
input_size = 224
|
| 22 |
+
transform = T.Compose([
|
| 23 |
+
T.Resize(input_size),
|
| 24 |
+
T.CenterCrop((input_size, input_size)),
|
| 25 |
+
T.ToTensor(),
|
| 26 |
+
norm
|
| 27 |
+
])
|
| 28 |
+
|
| 29 |
+
image_tensor = transform(image).unsqueeze(0) # Assuming CUDA is available, .cuda()
|
| 30 |
+
|
| 31 |
+
# Model selection
|
| 32 |
+
model_option = st.selectbox(
|
| 33 |
+
'Choose a model for feature upsampling',
|
| 34 |
+
('dino16', 'dinov2', 'clip', 'resnet50')
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
if st.button('Upsample Features'):
|
| 38 |
+
# Load the selected model
|
| 39 |
+
upsampler = torch.hub.load("mhamilton723/FeatUp", model_option).cuda()
|
| 40 |
+
hr_feats = upsampler(image_tensor)
|
| 41 |
+
lr_feats = upsampler.model(image_tensor)
|
| 42 |
+
|
| 43 |
+
# Plotting - adjust the plot_feats function or find an alternative to display images in Streamlit
|
| 44 |
+
# This step will likely need customization to display within Streamlit's interface
|
| 45 |
+
plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
|