Spaces:
Runtime error
Runtime error
Commit
·
5aa316f
1
Parent(s):
804efd3
fix app
Browse files- Dockerfile +24 -0
- README.md +3 -6
- app.py +50 -30
- pre-requirements.txt +0 -15
- requirements.txt +0 -1
Dockerfile
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use an NVIDIA CUDA base image with CUDA 11.8 and Ubuntu 20.04
|
| 2 |
+
FROM mhamilton723/featup:latest
|
| 3 |
+
|
| 4 |
+
# Set a working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
RUN pip3 install gradio
|
| 8 |
+
|
| 9 |
+
# Copy your application files into the container
|
| 10 |
+
COPY . /app
|
| 11 |
+
|
| 12 |
+
# Expose the port Streamlit will run on
|
| 13 |
+
EXPOSE 7860
|
| 14 |
+
|
| 15 |
+
RUN mkdir -m 700 flagged
|
| 16 |
+
|
| 17 |
+
ENV PYTHONUNBUFFERED=1 \
|
| 18 |
+
GRADIO_ALLOW_FLAGGING=never \
|
| 19 |
+
GRADIO_NUM_PORTS=1 \
|
| 20 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
| 21 |
+
SYSTEM=spaces
|
| 22 |
+
|
| 23 |
+
# Set the command to run your Streamlit app
|
| 24 |
+
CMD ["python3", "app.py"]
|
README.md
CHANGED
|
@@ -1,13 +1,10 @@
|
|
| 1 |
---
|
| 2 |
title: FeatUp
|
| 3 |
emoji: 👣⬆️
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk:
|
| 7 |
-
sdk_version: 1.32.2
|
| 8 |
-
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
title: FeatUp
|
| 3 |
emoji: 👣⬆️
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: docker
|
|
|
|
|
|
|
| 7 |
pinned: false
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,46 +1,66 @@
|
|
| 1 |
-
import
|
| 2 |
import torch
|
| 3 |
import torchvision.transforms as T
|
| 4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
# Assuming the necessary packages (featup, clip, etc.) are installed and accessible
|
| 7 |
-
from featup.util import norm, unnorm
|
| 8 |
-
from featup.plotting import plot_feats
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
# Streamlit UI
|
| 13 |
-
st.title("Feature Upsampling Demo")
|
| 14 |
|
| 15 |
-
# File uploader
|
| 16 |
-
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
| 17 |
-
if uploaded_file is not None:
|
| 18 |
-
image = Image.open(uploaded_file).convert("RGB")
|
| 19 |
|
| 20 |
-
# Image preprocessing
|
| 21 |
-
input_size = 224
|
| 22 |
-
transform = T.Compose([
|
| 23 |
-
T.Resize(input_size),
|
| 24 |
-
T.CenterCrop((input_size, input_size)),
|
| 25 |
-
T.ToTensor(),
|
| 26 |
-
norm
|
| 27 |
-
])
|
| 28 |
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
if st.button('Upsample Features'):
|
| 38 |
# Load the selected model
|
| 39 |
-
upsampler =
|
| 40 |
hr_feats = upsampler(image_tensor)
|
| 41 |
lr_feats = upsampler.model(image_tensor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
# This step will likely need customization to display within Streamlit's interface
|
| 45 |
-
plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
|
| 46 |
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
import torch
|
| 3 |
import torchvision.transforms as T
|
| 4 |
from PIL import Image
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from featup.util import norm, unnorm, pca, remove_axes
|
| 7 |
+
from pytorch_lightning import seed_everything
|
| 8 |
+
import os
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
def plot_feats(image, lr, hr):
|
| 12 |
+
assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
|
| 13 |
+
seed_everything(0)
|
| 14 |
+
[lr_feats_pca, hr_feats_pca], _ = pca([lr.unsqueeze(0), hr.unsqueeze(0)])
|
| 15 |
+
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
|
| 16 |
+
ax[0].imshow(image.permute(1, 2, 0).detach().cpu())
|
| 17 |
+
ax[0].set_title("Image")
|
| 18 |
+
ax[1].imshow(lr_feats_pca[0].permute(1, 2, 0).detach().cpu())
|
| 19 |
+
ax[1].set_title("Original Features")
|
| 20 |
+
ax[2].imshow(hr_feats_pca[0].permute(1, 2, 0).detach().cpu())
|
| 21 |
+
ax[2].set_title("Upsampled Features")
|
| 22 |
+
remove_axes(ax)
|
| 23 |
+
plt.tight_layout()
|
| 24 |
+
plt.close(fig) # Close plt to avoid additional empty plots
|
| 25 |
+
return fig
|
| 26 |
|
|
|
|
|
|
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
if __name__ == "__main__":
|
| 31 |
+
os.environ['TORCH_HOME'] = '/tmp/.cache'
|
| 32 |
|
| 33 |
+
options = ['dino16','vit', 'dinov2', 'clip', 'resnet50']
|
| 34 |
+
image_input = gr.Image(label="Choose an image to featurize", type="pil", image_mode='RGB')
|
| 35 |
+
model_option = gr.Radio(options, value="dino16", label='Choose a backbone to upsample')
|
| 36 |
+
|
| 37 |
+
models = {o:torch.hub.load("mhamilton723/FeatUp", o) for o in options}
|
| 38 |
+
|
| 39 |
+
def upsample_features(image, model_option):
|
| 40 |
+
# Image preprocessing
|
| 41 |
+
input_size = 224
|
| 42 |
+
transform = T.Compose([
|
| 43 |
+
T.Resize(input_size),
|
| 44 |
+
T.CenterCrop((input_size, input_size)),
|
| 45 |
+
T.ToTensor(),
|
| 46 |
+
norm
|
| 47 |
+
])
|
| 48 |
+
image_tensor = transform(image).unsqueeze(0).cuda()
|
| 49 |
|
|
|
|
| 50 |
# Load the selected model
|
| 51 |
+
upsampler = models[model_option].cuda()
|
| 52 |
hr_feats = upsampler(image_tensor)
|
| 53 |
lr_feats = upsampler.model(image_tensor)
|
| 54 |
+
upsampler.cpu()
|
| 55 |
+
|
| 56 |
+
return plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
demo = gr.Interface(fn=upsample_features,
|
| 60 |
+
inputs=[image_input, model_option],
|
| 61 |
+
outputs="plot",
|
| 62 |
+
title="Feature Upsampling Demo",
|
| 63 |
+
description="This demo allows you to upsample features of an image using selected models.")
|
| 64 |
|
| 65 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
|
|
|
|
|
|
| 66 |
|
pre-requirements.txt
DELETED
|
@@ -1,15 +0,0 @@
|
|
| 1 |
-
-i https://download.pytorch.org/whl/cu118
|
| 2 |
-
--extra-index-url https://pypi.org/simple/
|
| 3 |
-
torch
|
| 4 |
-
torchvision
|
| 5 |
-
torchaudio
|
| 6 |
-
kornia
|
| 7 |
-
omegaconf
|
| 8 |
-
pytorch-lightning
|
| 9 |
-
torchvision
|
| 10 |
-
tqdm
|
| 11 |
-
torchmetrics
|
| 12 |
-
scikit-learn
|
| 13 |
-
numpy
|
| 14 |
-
matplotlib
|
| 15 |
-
git+https://github.com/mhamilton723/CLIP.git
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
git+https://github.com/mhamilton723/FeatUp
|
|
|
|
|
|