Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,37 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import torch
|
|
|
4 |
|
5 |
-
#
|
6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
except Exception as e:
|
27 |
-
print(f"Fehler bei der Transkription: {e}")
|
28 |
-
return history, "Fehler bei der Audioverarbeitung."
|
29 |
-
|
30 |
-
with gr.Blocks() as demo:
|
31 |
-
chatbot = gr.Chatbot()
|
32 |
-
state = gr.State([])
|
33 |
-
|
34 |
-
with gr.Row():
|
35 |
-
audio_input = gr.Audio(type="filepath", label="Sprachaufnahme")
|
36 |
-
text_input = gr.Textbox(placeholder="Nachricht eingeben...")
|
37 |
-
|
38 |
-
text_output = gr.Textbox()
|
39 |
-
send_button = gr.Button("Senden")
|
40 |
-
clear_button = gr.Button("Chat löschen")
|
41 |
-
|
42 |
-
send_button.click(chat, [text_input, state], [state, chatbot])
|
43 |
-
#audio_input.submit(transcribe_and_send, [audio_input, state], [state, chatbot])
|
44 |
-
clear_button.click(lambda: [], outputs=text_output)
|
45 |
-
#text_input.submit(chat, [text_input, state], [state, chatbot])
|
46 |
|
47 |
if __name__ == "__main__":
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
+
# Laden der Modelle (einmalig beim Start)
|
6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
|
8 |
+
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=device)
|
9 |
+
text_to_speech = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech", device=device)
|
10 |
+
|
11 |
+
def audio_to_audio_chatbot(audio):
|
12 |
+
if audio is None:
|
13 |
+
return None, "Bitte eine Audio-Datei hochladen."
|
14 |
+
|
15 |
+
# 1. Speech-to-Text
|
16 |
+
text = speech_to_text(audio)["text"]
|
17 |
+
print(f"User: {text}")
|
18 |
+
|
19 |
+
# 2. Text-to-Text (Hier wird ein einfacher Echo-Bot verwendet, kann durch ein komplexeres Modell ersetzt werden)
|
20 |
+
response_text = f"Du hast gesagt: {text}"
|
21 |
+
print(f"Bot: {response_text}")
|
22 |
+
|
23 |
+
# 3. Text-to-Speech
|
24 |
+
speech = text_to_speech(response_text)
|
25 |
+
return speech["audio"], response_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
if __name__ == "__main__":
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=audio_to_audio_chatbot,
|
30 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
31 |
+
outputs=[gr.Audio(), gr.Textbox()],
|
32 |
+
title="Audio-zu-Audio-Chatbot (Streaming)",
|
33 |
+
description="Spreche in das Mikrofon und der Bot antwortet mit einer Audio-Ausgabe.",
|
34 |
+
live=True # Aktiviert Streaming
|
35 |
+
)
|
36 |
+
|
37 |
+
iface.launch()
|