import gradio as gr import requests import os import json import google.generativeai as genai # Load environment variables genai.configure(api_key=os.environ["geminiapikey"]) read_key = os.environ.get('HF_TOKEN', None) custom_css = ".md{height:450px}" def predict(prompt): # Create the model generation_config = { "temperature": 1, "top_p": 0.95, "top_k": 40, "max_output_tokens": 8192, "response_mime_type": "text/plain", } model = genai.GenerativeModel( model_name="gemini-2.0-flash-exp", generation_config=generation_config, ) chat_session = model.start_chat( history=[ ] ) response = chat_session.send_message(prompt) return response.text # Create the Gradio interface with gr.Blocks(css=custom_css) as demo: with gr.Row(): ort_input = gr.Textbox(label="prompt", placeholder="Gib den Namen des Ortes ein") with gr.Row(): details_output = gr.Markdown(label="answer",elem_id="md") #details_output = gr.Textbox(label="Ausgabe", value = f"\n\n\n\n") with gr.Row(): clearbutton = gr.Button("Clear") button = gr.Button("Senden") # Connect the button to the function button.click(fn=predict, inputs=ort_input, outputs=details_output) clearbutton.click(fn=clear, inputs=[], outputs=details_output) # Launch the Gradio application demo.launch()