Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
-
import requests
|
3 |
import os
|
4 |
-
import json
|
5 |
import google.generativeai as genai
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Load environment variables
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
read_key = os.environ.get('HF_TOKEN', None)
|
10 |
|
11 |
custom_css = """
|
@@ -15,14 +22,14 @@ custom_css = """
|
|
15 |
background: #202020;
|
16 |
padding: 20px;
|
17 |
color: white;
|
18 |
-
border:
|
19 |
}
|
20 |
"""
|
21 |
|
22 |
def predict(prompt):
|
23 |
# Create the model
|
24 |
generation_config = {
|
25 |
-
"temperature": 0.
|
26 |
"top_p": 0.95,
|
27 |
"top_k": 40,
|
28 |
"max_output_tokens": 2048,
|
@@ -31,31 +38,35 @@ def predict(prompt):
|
|
31 |
|
32 |
model = genai.GenerativeModel(
|
33 |
model_name="gemini-1.5-pro",
|
34 |
-
#model_name="gemini-2.0-flash-exp",
|
35 |
generation_config=generation_config,
|
36 |
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Create the Gradio interface
|
48 |
with gr.Blocks(css=custom_css) as demo:
|
49 |
with gr.Row():
|
50 |
-
details_output = gr.Markdown(label="answer", elem_id="md")
|
51 |
-
|
|
|
52 |
with gr.Row():
|
53 |
-
|
54 |
-
with gr.Row():
|
55 |
-
button = gr.Button("Senden")
|
56 |
|
57 |
# Connect the button to the function
|
58 |
-
button.click(fn=predict, inputs=ort_input, outputs=details_output)
|
59 |
|
60 |
# Launch the Gradio application
|
61 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
|
|
3 |
import google.generativeai as genai
|
4 |
+
import logging
|
5 |
+
|
6 |
+
# Configure Logging
|
7 |
+
logging.basicConfig(level=logging.ERROR, format='%(asctime)s - %(levelname)s - %(message)s')
|
8 |
|
9 |
# Load environment variables
|
10 |
+
try:
|
11 |
+
genai.configure(api_key=os.environ["geminiapikey"])
|
12 |
+
except KeyError:
|
13 |
+
logging.error("Error: 'geminiapikey' environment variable not found.")
|
14 |
+
exit(1)
|
15 |
+
|
16 |
read_key = os.environ.get('HF_TOKEN', None)
|
17 |
|
18 |
custom_css = """
|
|
|
22 |
background: #202020;
|
23 |
padding: 20px;
|
24 |
color: white;
|
25 |
+
border: 1px solid white;
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
def predict(prompt):
|
30 |
# Create the model
|
31 |
generation_config = {
|
32 |
+
"temperature": 0.7,
|
33 |
"top_p": 0.95,
|
34 |
"top_k": 40,
|
35 |
"max_output_tokens": 2048,
|
|
|
38 |
|
39 |
model = genai.GenerativeModel(
|
40 |
model_name="gemini-1.5-pro",
|
|
|
41 |
generation_config=generation_config,
|
42 |
)
|
43 |
|
44 |
+
try:
|
45 |
+
contents_to_send = [genai.Content(parts=[prompt])]
|
46 |
+
|
47 |
+
response = model.generate_content(contents=contents_to_send, tools='google_search_retrieval')
|
48 |
+
|
49 |
+
if response and response.text:
|
50 |
+
return response.text
|
51 |
+
else:
|
52 |
+
logging.error(f"Unexpected response: {response}")
|
53 |
+
return "Error: Could not extract text from the response."
|
54 |
+
except Exception as e:
|
55 |
+
logging.error(f"An error occurred: {e}")
|
56 |
+
return f"An error occurred: {e}"
|
57 |
+
|
58 |
|
59 |
# Create the Gradio interface
|
60 |
with gr.Blocks(css=custom_css) as demo:
|
61 |
with gr.Row():
|
62 |
+
details_output = gr.Markdown(label="answer", elem_id="md")
|
63 |
+
with gr.Row():
|
64 |
+
ort_input = gr.Textbox(label="prompt", placeholder="ask anything...")
|
65 |
with gr.Row():
|
66 |
+
button = gr.Button("Senden")
|
|
|
|
|
67 |
|
68 |
# Connect the button to the function
|
69 |
+
button.click(fn=predict, inputs=ort_input, outputs=details_output)
|
70 |
|
71 |
# Launch the Gradio application
|
72 |
demo.launch()
|