Spaces:
Running
Running
import gradio as gr | |
import requests | |
import os | |
import json | |
import google.generativeai as genai | |
from bs4 import BeautifulSoup | |
from groq import Groq | |
# Load environment variables | |
genai.configure(api_key=os.environ["geminiapikey"]) | |
read_key = os.environ.get('HF_TOKEN', None) | |
custom_css = """ | |
#md { | |
height: 400px; | |
font-size: 30px; | |
background: #202020; | |
padding: 20px; | |
color: white; | |
border: 1 px solid white; | |
} | |
""" | |
api_key = os.getenv('groq') | |
if api_key is None: | |
raise ValueError("groq_whisper environment variable is not set") | |
# Initialize the Groq client | |
client = Groq(api_key=api_key) | |
def predict(prompt): | |
generation_config = { | |
"temperature": 0.4, | |
"top_p": 0.95, | |
"top_k": 40, | |
"max_output_tokens": 8192, | |
"response_mime_type": "text/plain", | |
} | |
model = genai.GenerativeModel( | |
model_name="gemini-2.0-flash-exp", | |
generation_config=generation_config, | |
) | |
chat_session = model.start_chat( | |
history=[] | |
) | |
response = chat_session.send_message(f"{prompt}\n antworte immer auf deutsch") | |
response_value = response.candidates[0].content.parts[0].text | |
return response_value | |
#very simple (and extremly fast) websearch | |
def websearch(search_term): | |
headers = { | |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36" | |
} | |
url = f"https://www.google.com/search?q={search_term}" | |
response = requests.get(url, headers=headers) | |
soup = BeautifulSoup(response.content, 'html.parser') | |
response_text = soup.find('body') | |
prompt = f"{search_term}\n use this result from a google search to answer the question \n {response_text.text}" | |
result = predict(prompt) | |
return result | |
def process_audio(file_path): | |
try: | |
# Open the audio file | |
with open(file_path, "rb") as file: | |
# Create a translation of the audio file | |
translation = client.audio.transcriptions.create( | |
file=(os.path.basename(file_path), file.read()), # Correct passing of filename | |
model="whisper-large-v3-turbo", # Required model to use for translation | |
prompt="transcribe", # Optional | |
language="de", # Optional | |
response_format="json", # Optional | |
temperature=0.0 # Optional | |
) | |
# Return the translation text | |
suche = websearch(translation.text) | |
result = predict(suche) | |
return result | |
return translation.text | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
# Create the Gradio interface | |
with gr.Blocks(css=custom_css) as demo: | |
with gr.Row(): | |
details_output = gr.Markdown(label="answer", elem_id="md") | |
#details_output = gr.Textbox(label="Ausgabe", value = f"\n\n\n\n") | |
with gr.Row(): | |
ort_input = gr.Textbox(label="prompt", placeholder="ask anything...") | |
audio_input=gr.Microphone(type="filepath") | |
with gr.Row(): | |
button = gr.Button("Senden") | |
# Connect the button to the function | |
button.click(fn=websearch, inputs={ort_input, audio_input], outputs=details_output) | |
# Launch the Gradio application | |
demo.launch() | |
""" | |
with gr.Blocks() as speech: | |
with gr.Row(): | |
sr_outputs = gr.Textbox(label="Antwort") | |
with gr.Row(): | |
sr_inputs = gr.Microphone(type="filepath") | |
sr_inputs.change(process_audio, inputs=sr_inputs, outputs=sr_outputs) | |
speech.launch() | |
""" | |