File size: 1,464 Bytes
a936419
 
085ef0b
ae59393
1605c68
a936419
085ef0b
1605c68
0963c3d
085ef0b
cb7bc65
 
6ad3993
cb7bc65
ee8bb54
cb7bc65
 
 
 
 
79b0e5e
 
 
 
ec5f7ea
79b0e5e
 
c3b4363
79b0e5e
 
 
 
e2e6e14
79b0e5e
 
 
 
 
 
 
56a9e2e
79b0e5e
 
e6bff66
085ef0b
79b0e5e
85deaff
77b15e6
6ad3993
5399f24
6ad3993
7d1f991
e5d9b98
085ef0b
 
7d1f991
e5d9b98
085ef0b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import requests
import os
import json
import google.generativeai as genai

# Load environment variables
genai.configure(api_key=os.environ["geminiapikey"])
read_key = os.environ.get('HF_TOKEN', None)

custom_css = """
#md {
    height: 400px;  
    font-size: 30px;
    background: #202020;
    padding: 20px;
    color: white;
    border: 1 px solid white;
}
"""

def predict(prompt):
    # Create the model
    generation_config = {
        "temperature": 1,
        "top_p": 0.95,
        "top_k": 40,
        "max_output_tokens": 2048,
        "response_mime_type": "text/plain",
    }

    model = genai.GenerativeModel(
        model_name="gemini-1.5-pro",
        generation_config=generation_config,
    )

    chat_session = model.start_chat(
        history=[
        ]
    )
    
    response = chat_session.send_message(prompt)   
    return response.text

# Create the Gradio interface
with gr.Blocks(css=custom_css) as demo:
    with gr.Row():
        details_output = gr.Markdown(label="answer", elem_id="md")        
        #details_output = gr.Textbox(label="Ausgabe", value = f"\n\n\n\n")  
    with gr.Row():
        ort_input = gr.Textbox(label="prompt", placeholder="ask anything...")      
    with gr.Row():         
        button = gr.Button("Senden")    

    # Connect the button to the function
    button.click(fn=predict, inputs=ort_input, outputs=details_output)   

# Launch the Gradio application
demo.launch()