Spaces:
Running
Running
File size: 1,450 Bytes
a936419 085ef0b ae59393 1605c68 a936419 085ef0b 1605c68 0963c3d 085ef0b 79b0e5e 56a9e2e 79b0e5e e6bff66 085ef0b 79b0e5e 85deaff 79b0e5e 5399f24 79b0e5e 3379f87 cc1e631 1e4afd6 e5d9b98 085ef0b 79b0e5e fe746c1 e5d9b98 085ef0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import gradio as gr
import requests
import os
import json
import google.generativeai as genai
# Load environment variables
genai.configure(api_key=os.environ["geminiapikey"])
read_key = os.environ.get('HF_TOKEN', None)
custom_css = ".md{height:450px}"
def predict(prompt):
# Create the model
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
model = genai.GenerativeModel(
model_name="gemini-2.0-flash-exp",
generation_config=generation_config,
)
chat_session = model.start_chat(
history=[
]
)
response = chat_session.send_message(prompt)
return response.text
# Create the Gradio interface
with gr.Blocks(css=custom_css) as demo:
with gr.Row():
ort_input = gr.Textbox(label="prompt", placeholder="Gib den Namen des Ortes ein")
with gr.Row():
details_output = gr.Markdown(label="answer",elem_id="md")
#details_output = gr.Textbox(label="Ausgabe", value = f"\n\n\n\n")
with gr.Row():
clearbutton = gr.Button("Clear")
button = gr.Button("Senden")
# Connect the button to the function
button.click(fn=predict, inputs=ort_input, outputs=details_output)
clearbutton.click(fn=clear, inputs=[], outputs=details_output)
# Launch the Gradio application
demo.launch() |