File size: 3,980 Bytes
a936419
 
 
04f7cb6
f81e9c7
ae59393
 
dde4a77
fa394de
dde4a77
a936419
fa394de
0963c3d
3d552fd
5535edf
04f7cb6
3348b48
e410dd0
5272d11
a936419
e410dd0
2f3bf94
 
e410dd0
a936419
e410dd0
 
 
2f3bf94
 
e410dd0
2f3bf94
 
 
74c6a6a
5f6bea3
2f3bf94
 
e410dd0
2f3bf94
 
 
0963c3d
2f3bf94
 
ae59393
2f3bf94
 
 
 
75278c7
 
b74e7f8
75278c7
2f3bf94
 
 
e410dd0
 
cefaac5
920c8fd
5d0c64d
5535edf
 
b66ac54
 
db7669b
b66ac54
 
a789a4d
b66ac54
 
 
 
 
 
 
c1c8a1e
 
 
 
 
 
 
 
 
a936419
 
85deaff
 
 
dde4a77
b74e7f8
a28b6b3
5535edf
 
2f3bf94
a28b6b3
c1c8a1e
3a2f717
a8a4b07
 
a28b6b3
3a2f717
b74e7f8
c1c8a1e
ae59393
a936419
a28a8aa
a936419
 
a28b6b3
a936419
 
2f3bf94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin
from gradio_client import Client
import json
import csv
import pandas
import groq
import os

api_key = os.environ.get('groq')
read_key = os.environ.get('HF_TOKEN', None)

def parse_links_and_content(ort):
    base_url = "https://vereine-in-deutschland.net"
    all_links = []   
    # Konstruiere die vollständige URL
    initial_url = f"{base_url}/vereine/Bayern/{ort}/"
    
    try:
        # Senden der Anfrage an die initiale URL
        response = requests.get(initial_url)
        response.raise_for_status()  # Überprüfen, ob die Anfrage erfolgreich war
        
        # Parse the HTML content using BeautifulSoup
        soup = BeautifulSoup(response.content, 'html.parser')
        
        # Ermittle die letzte Seite
        link_element = soup.select_one('li.page-item:nth-child(8) > a:nth-child(1)')
        
        if link_element and 'href' in link_element.attrs:
            href = link_element['href']
            # Extrahiere die letzten beiden Zeichen der URL
            last_two_chars = href[-2:].strip()
            
            # Konvertiere die letzten beiden Zeichen in einen Integer
            last_two_chars_int = int(last_two_chars)
        else:
            last_two_chars_int = 1  # Falls die letzte Seite nicht gefunden wird, nimm an, dass es nur eine Seite gibt

        # Schleife durch alle Seiten und sammle Links
        for page_number in range(1, 14):
            page_url = f"{base_url}/vereine/Bayern/{ort}/p/{page_number}"
            response = requests.get(page_url)
            response.raise_for_status()            
            soup = BeautifulSoup(response.content, 'html.parser')
            target_div = soup.select_one('div.row-cols-1:nth-child(4)')
            
            if target_div:
                #links = [urljoin(base_url, a['href']) for a in target_div.find_all('a', href=True)]
                texts = [a.text for a in target_div.find_all('a', href=True)] 
                #print(texts)
                all_links.extend(texts)
            else:
                print(f"Target div not found on page {page_number}")
        
    except Exception as e:
        return str(e), []
        
    all_links = all_links[0::2]
    return all_links

def scrape_links(links):
    links=links
    contact_details= []
    client = Client("mgokg/PerplexicaApi")
    for verein in links:   
        result = client.predict(
            
    		prompt=f"{verein}",
    		api_name="/parse_links"
    )
        #print(result)
        contact_details.append(result)
        
    return contact_details

# Speichere die JSON-Daten in eine CSV-Datei 
def save_to_csv(data, filename): 
    keys = data[0].keys() 
    with open(filename, 'w', newline='', encoding='utf-8') as output_file: 
        dict_writer = csv.DictWriter(output_file, fieldnames=keys) 
        dict_writer.writeheader() 
        dict_writer.writerows(data)

# Erstelle die Gradio-Schnittstelle
with gr.Blocks() as demo:
    gr.Markdown("# ")
    with gr.Row():
        ort_input = gr.Textbox(label="Ort", placeholder="Gib den Namen des Ortes ein")
    links_output = gr.JSON(label="Vereinsliste")
    #links_output = gr.DataFrame(label="Ergebnisse")
    #json_output = gr.JSON(label="Ergebnisse")

    def process_ort(ort):
        links = parse_links_and_content(ort)
        #return links
        contact= scrape_links(links)      
        json_data = [json.loads(item) for item in contact] 
        #save_to_csv(json_data, './contact_details.csv')
        #return f"[Download CSV](contact_details.csv)", json_data
        #return json_data
        #return contact
        return json_data
        #return json_data
        
    # Button zum Starten der Parsung
    button = gr.Button("senden")
    
    # Verbinde den Button mit der Funktion
    button.click(fn=process_ort, inputs=ort_input, outputs=links_output)

# Starte die Gradio-Anwendung
demo.launch()