File size: 4,636 Bytes
e5b9307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import deepsparse
from transformers import TextIteratorStreamer
from threading import Thread
import time
import gradio as gr
from typing import Tuple, List

deepsparse.cpu.print_hardware_capability()

MODEL_PATH = "TinyStories-1M"

DESCRIPTION = f"""
# TinyStories - DeepSparse

The model stub for this example is: {MODEL_PATH}
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 128


def clear_and_save_textbox(message: str) -> Tuple[str, str]:
    return "", message


def display_input(
    message: str, history: List[Tuple[str, str]]
) -> List[Tuple[str, str]]:
    history.append((message, ""))
    return history


def delete_prev_fn(history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
    try:
        message, _ = history.pop()
    except IndexError:
        message = ""
    return history, message or ""


# Setup the engine
pipe = deepsparse.Pipeline.create(
    task="text-generation",
    model_path=MODEL_PATH,
    max_generated_tokens=DEFAULT_MAX_NEW_TOKENS,
    sequence_length=MAX_MAX_NEW_TOKENS,
)


with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Group():
        chatbot = gr.Chatbot(label="Chatbot")
        with gr.Row():
            textbox = gr.Textbox(
                container=False,
                show_label=False,
                placeholder="Type a message...",
                scale=10,
            )
            submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)

    with gr.Row():
        retry_button = gr.Button("🔄  Retry", variant="secondary")
        undo_button = gr.Button("↩️ Undo", variant="secondary")
        clear_button = gr.Button("🗑️  Clear", variant="secondary")

    saved_input = gr.State()

    gr.Examples(
        examples=["Once upon a time"],
        inputs=[textbox],
    )

    max_new_tokens = gr.Slider(
        label="Max new tokens",
        minimum=1,
        maximum=MAX_MAX_NEW_TOKENS,
        step=1,
        value=DEFAULT_MAX_NEW_TOKENS,
    )
    temperature = gr.Slider(
        label="Temperature",
        minimum=0.1,
        maximum=4.0,
        step=0.1,
        value=1.0,
    )

    # Generation inference
    def generate(message, history, max_new_tokens: int, temperature: float):
        streamer = TextIteratorStreamer(pipe.tokenizer)
        pipe.max_generated_tokens = max_new_tokens
        pipe.sampling_temperature = temperature
        generation_kwargs = dict(sequences=message, streamer=streamer)
        thread = Thread(target=pipe, kwargs=generation_kwargs)
        thread.start()
        for new_text in streamer:
            history[-1][1] += new_text
            yield history
        thread.join()
        print(pipe.timer_manager)

    # Hooking up all the buttons
    textbox.submit(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).success(
        generate,
        inputs=[saved_input, chatbot, max_new_tokens, temperature],
        outputs=[chatbot],
        api_name=False,
    )

    submit_button.click(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).success(
        generate,
        inputs=[saved_input, chatbot, max_new_tokens, temperature],
        outputs=[chatbot],
        api_name=False,
    )

    retry_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        generate,
        inputs=[saved_input, chatbot, max_new_tokens, temperature],
        outputs=[chatbot],
        api_name=False,
    )

    undo_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=lambda x: x,
        inputs=[saved_input],
        outputs=textbox,
        api_name=False,
        queue=False,
    )

    clear_button.click(
        fn=lambda: ([], ""),
        outputs=[chatbot, saved_input],
        queue=False,
        api_name=False,
    )

demo.queue().launch()