convert-fp8 / app.py
mgoin's picture
Conversion app
de81c99
raw
history blame
9.82 kB
import os
from typing import Optional, Tuple, List
import gradio as gr
import torch
import spaces
from dataclasses import dataclass
from huggingface_hub import HfApi, Repository, CommitOperationAdd
from transformers import AutoProcessor
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot, wrap_hf_model_class
@dataclass
class CommitInfo:
repo_url: str
HF_TOKEN = os.environ.get("HF_TOKEN")
def get_model_class(class_name: str):
"""Dynamically import and return the specified model class from transformers"""
try:
# Default to AutoModelForCausalLM if not specified
if not class_name:
from transformers import AutoModelForCausalLM
return AutoModelForCausalLM
exec(f"from transformers import {class_name}")
return eval(class_name)
except Exception as e:
raise ValueError(f"Failed to import model class {class_name}: {str(e)}")
def parse_ignore_list(ignore_str: str) -> List[str]:
"""Parse comma-separated ignore list string into list"""
if not ignore_str:
return ["lm_head"] # Default ignore list
return [item.strip() for item in ignore_str.split(',') if item.strip()]
def create_quantized_model(
model_id: str,
work_dir: str,
api: HfApi,
ignore_list: List[str],
model_class_name: str
) -> Tuple[str, List[Tuple[str, Exception]]]:
"""Quantize model to FP8 and save to disk"""
errors = []
try:
# Get the appropriate model class
model_class = get_model_class(model_class_name)
wrapped_model_class = wrap_hf_model_class(model_class)
# Load model with ZeroGPU
model = wrapped_model_class.from_pretrained(
model_id,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
_attn_implementation="eager"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Configure quantization
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
ignore=ignore_list,
)
# Apply quantization
save_dir = os.path.join(work_dir, f"{model_id.split('/')[-1]}-FP8-dynamic")
oneshot(model=model, recipe=recipe, output_dir=save_dir)
processor.save_pretrained(save_dir)
return save_dir, errors
except Exception as e:
errors.append((model_id, e))
raise e
def push_to_hub(
api: HfApi,
model_id: str,
quantized_path: str,
token: str,
ignore_list: List[str],
model_class_name: str,
) -> CommitInfo:
"""Create new repository with quantized model"""
# Create new model repo name
original_owner = model_id.split('/')[0]
new_model_name = f"{model_id.split('/')[-1]}-fp8"
# Get the token owner's username
token_owner = api.whoami(token)["name"]
# Create the new repo under the token owner's account
target_repo = f"{token_owner}/{new_model_name}"
# Create model card content
model_card = f"""---
language:
- en
license: apache-2.0
tags:
- fp8
- quantized
- llmcompressor
base_model: {model_id}
quantization_config:
ignored_layers: {ignore_list}
model_class: {model_class_name}
---
# {new_model_name}
This is an FP8-quantized version of [{model_id}](https://huggingface.co/{model_id}) using [LLM Compressor](https://github.com/georgian-io/LLM-Compressor).
## Quantization Details
- Weights quantized to FP8 with per channel PTQ
- Activations quantized to FP8 with dynamic per token
- Linear layers targeted for quantization
- Ignored layers: {ignore_list}
- Model class: {model_class_name}
## Usage
```python
from transformers import {model_class_name}, AutoProcessor
model = {model_class_name}.from_pretrained("{target_repo}")
processor = AutoProcessor.from_pretrained("{target_repo}")
```
"""
# Create new repository
api.create_repo(
repo_id=target_repo,
private=False,
exist_ok=True,
)
# Prepare operations for upload
operations = [
CommitOperationAdd(path_in_repo="README.md", path_or_content=model_card),
]
# Add all files from quantized model
for root, _, files in os.walk(quantized_path):
for file in files:
file_path = os.path.join(root, file)
relative_path = os.path.relpath(file_path, quantized_path)
operations.append(
CommitOperationAdd(
path_in_repo=relative_path,
path_or_content=file_path
)
)
# Upload files
api.create_commit(
repo_id=target_repo,
operations=operations,
commit_message=f"Add FP8 quantized version of {model_id}",
)
return CommitInfo(repo_url=f"https://huggingface.co/{target_repo}")
@spaces.GPU(duration=300) # 5 minutes timeout for large models
def run(
model_id: str,
is_private: bool,
token: str,
ignore_str: str,
model_class_name: str
) -> str:
"""Main function to handle quantization and model upload"""
if not token or model_id == "":
return """
### Invalid input 🐞
Please provide both a token and model_id.
"""
try:
# Parse ignore list
ignore_list = parse_ignore_list(ignore_str)
# Set up API with user's token
api = HfApi(token=token)
print("Processing model:", model_id)
print("Ignore list:", ignore_list)
print("Model class:", model_class_name)
# Create working directory
work_dir = "quantized_models"
os.makedirs(work_dir, exist_ok=True)
# Quantize model
quantized_path, errors = create_quantized_model(
model_id,
work_dir,
api,
ignore_list,
model_class_name
)
# Upload quantized model to new repository
commit_info = push_to_hub(
api,
model_id,
quantized_path,
token,
ignore_list,
model_class_name
)
response = f"""
### Success πŸ”₯
Your model has been successfully quantized to FP8 and uploaded to a new repository:
[{commit_info.repo_url}]({commit_info.repo_url})
Configuration:
- Ignored layers: {ignore_list}
- Model class: {model_class_name}
You can use this model directly with the transformers library!
"""
if errors:
response += "\nWarnings during quantization:\n"
response += "\n".join(f"Warning for {filename}: {e}" for filename, e in errors)
return response
except Exception as e:
return f"""
### Error 😒
An error occurred during processing:
{str(e)}
"""
# Gradio Interface
DESCRIPTION = """
# Convert any model to FP8 using LLM Compressor
This space will quantize your model to FP8 format using LLM Compressor and create a new model repository under your account.
The steps are:
1. Paste your HuggingFace token (from hf.co/settings/tokens) - needs write access
2. Enter the model ID you want to quantize
3. (Optional) Customize ignored layers and model class
4. Click "Submit"
5. You'll get a link to your new quantized model repository! πŸš€
## Advanced Options:
- **Ignore List**: Comma-separated list of layer patterns to ignore during quantization. Examples:
- Llama: `lm_head`
- Phi3v: `re:.*lm_head,re:model.vision_embed_tokens.*`
- Pixtral: `re:.*lm_head,re:multi_modal_projector.*`
- Llama Vision: `re:.*lm_head,re:multi_modal_projector.*,re:vision_model.*`
- **Model Class**: Specific model class from transformers (default: AutoModelForCausalLM). Examples:
- `MllamaForConditionalGeneration`
- `Qwen2VLForConditionalGeneration`
- `LlavaForConditionalGeneration`
Note:
- Processing may take several minutes depending on the model size
- The quantized model will be created as a new public repository under your account
- Your token needs write access to create the new repository
"""
title = "FP8 Quantization with LLM Compressor"
with gr.Blocks(title=title) as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
model_id = gr.Text(
max_lines=1,
label="model_id",
placeholder="huggingface/model-name"
)
is_private = gr.Checkbox(
label="Private model (requires read access to original model)"
)
token = gr.Text(
max_lines=1,
label="your_hf_token (requires write access)",
placeholder="hf_..."
)
ignore_str = gr.Text(
max_lines=1,
label="ignore_list (comma-separated)",
placeholder="lm_head,re:vision_model.*",
value="lm_head"
)
model_class_name = gr.Text(
max_lines=1,
label="model_class_name (optional)",
placeholder="AutoModelForCausalLM",
value="AutoModelForCausalLM"
)
with gr.Row():
clean = gr.ClearButton()
submit = gr.Button("Submit", variant="primary")
with gr.Column():
output = gr.Markdown()
submit.click(
run,
inputs=[model_id, is_private, token, ignore_str, model_class_name],
outputs=output,
concurrency_limit=1
)
demo.queue(max_size=10).launch(show_api=True)