File size: 3,145 Bytes
2f9ea03
bb16e72
2f9ea03
bb16e72
d58d5be
14f626b
8e2bfc0
ab9c414
bb16e72
ab9c414
 
8e2bfc0
bb16e72
 
 
 
 
 
 
ab9c414
 
 
bb16e72
 
 
 
 
 
 
 
 
ab9c414
bb16e72
8e2bfc0
bb16e72
8e2bfc0
ab9c414
 
8e2bfc0
bb16e72
 
 
8e2bfc0
 
 
bb16e72
ab9c414
8e2bfc0
bb16e72
8e2bfc0
bb16e72
 
 
8e2bfc0
bb16e72
ab9c414
 
 
8e2bfc0
bb16e72
 
8e2bfc0
ab9c414
08137ac
bb16e72
ab9c414
 
 
08137ac
ab9c414
e6713e2
ab9c414
 
 
 
 
e6713e2
bb16e72
 
 
ab9c414
 
 
 
 
 
8e2bfc0
 
ab9c414
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
from diffusers import AutoencoderKL
import numpy as np
import gradio as gr

# Configure device and attention implementation
device = "cuda" if torch.cuda.is_available() else "cpu"
attn_implementation = "flash_attention_2" if device == "cuda" else "eager"
print(f"Using device: {device} with {attn_implementation}")

# Initialize medical imaging components
def load_medical_models():
    try:
        processor = VLChatProcessor.from_pretrained("deepseek-ai/Janus-1.3B")
        
        model = MultiModalityCausalLM.from_pretrained(
            "deepseek-ai/Janus-1.3B",
            torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
            attn_implementation=attn_implementation,
            use_flash_attention_2=(attn_implementation == "flash_attention_2")
        ).to(device).eval()
        
        vae = AutoencoderKL.from_pretrained(
            "stabilityai/sdxl-vae",
            torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
        ).to(device).eval()
        
        return processor, model, vae
    except Exception as e:
        print(f"Error loading medical models: {str(e)}")
        raise

processor, model, vae = load_medical_models()

# Medical image analysis function with attention control
def medical_analysis(image, question, seed=42):
    try:
        torch.manual_seed(seed)
        np.random.seed(seed)
        
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image).convert("RGB")
            
        inputs = processor(
            text=f"<medical_query>{question}</medical_query>",
            images=[image],
            return_tensors="pt"
        ).to(device)
        
        outputs = model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=512,
            temperature=0.1,
            top_p=0.95,
            pad_token_id=processor.tokenizer.eos_token_id
        )
        
        return processor.decode(outputs[0], skip_special_tokens=True)
    except Exception as e:
        return f"Radiology analysis error: {str(e)}"

# Medical interface
with gr.Blocks(title="Medical Imaging Assistant", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""# AI Radiology Assistant
                **CT/MRI/X-ray Analysis System**""")
    
    with gr.Tab("Diagnostic Imaging"):
        with gr.Row():
            med_image = gr.Image(label="DICOM Image", type="pil")
            med_question = gr.Textbox(label="Clinical Query", 
                                    placeholder="Describe findings in this CT scan...")
        analysis_btn = gr.Button("Analyze", variant="primary")
        report_output = gr.Textbox(label="Radiology Report", interactive=False)
    
    med_question.submit(
        medical_analysis,
        inputs=[med_image, med_question],
        outputs=report_output
    )
    analysis_btn.click(
        medical_analysis,
        inputs=[med_image, med_question],
        outputs=report_output
    )

demo.launch(server_name="0.0.0.0", server_port=7860)