{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Shasha Demo Notebook\n", "This notebook shows how to programmatically invoke our AI inference pipeline, run sentiment analysis, and generate code examples." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 1. Setup inference client\n", "from hf_client import get_inference_client\n", "# Initialize client for Qwen3-32B (fallback on Groq if unavailable)\n", "client = get_inference_client('Qwen/Qwen3-32B', provider='auto')\n", "# Example chat completion request\n", "resp = client.chat.completions.create(\n", " model='Qwen/Qwen3-32B',\n", " messages=[{'role':'user','content':'Write a Python function to reverse a string.'}]\n", ")\n", "print(resp.choices[0].message.content)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 2. Sentiment Analysis with Transformers.js (Python demo)\n", "from transformers import pipeline\n", "# Using OpenAI provider for sentiment\n", "sentiment = pipeline('sentiment-analysis', model='openai/gpt-4', trust_remote_code=True)\n", "print(sentiment('I love building AI-powered tools!'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## Next steps:\n", "- Try different models (Gemini Pro, Fireworks AI) by changing the model= parameter.\n", "- Explore custom plugins via plugins.py to integrate with Slack or GitHub.\n", "- Use auth.py to load private files from Google Drive." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.x" } }, "nbformat": 4, "nbformat_minor": 5 }