# app.py from typing import Optional, Dict, List, Tuple import gradio as gr from constants import HTML_SYSTEM_PROMPT, AVAILABLE_MODELS, DEMO_LIST from hf_client import get_inference_client from tavily_search import enhance_query_with_search from utils import ( extract_text_from_file, extract_website_content, apply_search_replace_changes, history_to_messages, history_to_chatbot_messages, remove_code_block, parse_transformers_js_output, format_transformers_js_output ) from deploy import send_to_sandbox, load_project_from_url # Type aliases History = List[Tuple[str, str]] # Core generation function def generation_code( query: Optional[str], image: Optional[gr.Image], file: Optional[str], website_url: Optional[str], _setting: Dict[str, str], _history: Optional[History], _current_model_name: str, enable_search: bool, language: str, provider: str ) -> Tuple[str, History, str, List[Dict[str, str]]]: # Initialize inputs if query is None: query = '' if _history is None: _history = [] # System prompt and history system_prompt = _setting.get('system', HTML_SYSTEM_PROMPT) messages = history_to_messages(_history, system_prompt) # File input if file: text = extract_text_from_file(file) query += f"\n\n[File content]\n{text[:5000]}" # Website input if website_url: text = extract_website_content(website_url) if not text.startswith('Error'): query += f"\n\n[Website content]\n{text[:8000]}" # Web search enhancement final_query = enhance_query_with_search(query, enable_search) messages.append({'role': 'user', 'content': final_query}) # Model inference client = get_inference_client(_current_model_name, provider) resp = client.chat.completions.create( model=_current_model_name, messages=messages, max_tokens=10000 ) content = resp.choices[0].message.content # Post-processing has_existing = bool(_history) if language == 'transformers.js': files = parse_transformers_js_output(content) code_str = format_transformers_js_output(files) preview_html = send_to_sandbox(files['index.html']) else: clean = remove_code_block(content) if has_existing: clean = apply_search_replace_changes(_history[-1][1], clean) code_str = clean preview_html = send_to_sandbox(clean) if language == 'html' else '' # Update history new_history = _history + [(query, code_str)] chat_msgs = history_to_chatbot_messages(new_history) return code_str, new_history, preview_html, chat_msgs # Build UI with gr.Blocks(theme=gr.themes.Base(), title="AnyCoder - AI Code Generator") as demo: # State history_state = gr.State([]) setting_state = gr.State({'system': HTML_SYSTEM_PROMPT}) model_state = gr.State(AVAILABLE_MODELS[0]['id']) with gr.Sidebar(): gr.Markdown("## AnyCoder AI") # Load project url_in = gr.Textbox(label="Load HF Space URL", placeholder="https://huggingface.co/spaces/user/project") load_btn = gr.Button("Import Project") load_status = gr.Markdown(visible=False) gr.Markdown("---") # Inputs prompt_in = gr.Textbox(label="Prompt", lines=3) file_in = gr.File(label="Reference file") image_in = gr.Image(label="Design image") url_site = gr.Textbox(label="Website URL") search_chk = gr.Checkbox(label="Enable Web Search") language_dd = gr.Dropdown( choices=["html", "python", "transformers.js"], value="html", label="Language" ) model_dd = gr.Dropdown( choices=[m['name'] for m in AVAILABLE_MODELS], value=AVAILABLE_MODELS[0]['name'], label="Model" ) gen_btn = gr.Button("Generate") clr_btn = gr.Button("Clear") with gr.Column(): with gr.Tabs(): with gr.Tab("Code"): code_out = gr.Code(label="Generated Code") with gr.Tab("Preview"): preview_out = gr.HTML(label="Live Preview") with gr.Tab("History"): chat_out = gr.Chatbot(label="History") # Events load_btn.click( fn=lambda u: load_project_from_url(u), inputs=[url_in], outputs=[load_status, code_out, preview_out, url_in, history_state, chat_out] ) def on_model_change(name: str) -> str: for m in AVAILABLE_MODELS: if m['name'] == name: return m['id'] return AVAILABLE_MODELS[0]['id'] model_dd.change( fn=on_model_change, inputs=[model_dd], outputs=[model_state] ) gen_btn.click( fn=generation_code, inputs=[ prompt_in, image_in, file_in, url_site, setting_state, history_state, model_state, search_chk, language_dd, gr.State('auto') ], outputs=[code_out, history_state, preview_out, chat_out] ) clr_btn.click( fn=lambda: ([], [], "", []), outputs=[history_state, chat_out, preview_out, code_out] ) if __name__ == '__main__': demo.queue().launch()