# app.py """ Shasha / AnyCoder AI – Gradio front‑end + back‑end Generate or refactor code with multiple foundation models. Uploads, website scrape, optional Tavily search enrichment, live HTML preview. """ from __future__ import annotations from typing import List, Tuple, Dict, Any, Optional import gradio as gr # ────────────────────────────────────────────────────────────────────────────── # Local helpers (unchanged) # ────────────────────────────────────────────────────────────────────────────── from constants import ( HTML_SYSTEM_PROMPT, TRANSFORMERS_JS_SYSTEM_PROMPT, AVAILABLE_MODELS, ) from hf_client import get_inference_client from tavily_search import enhance_query_with_search from utils import ( extract_text_from_file, extract_website_content, apply_search_replace_changes, history_to_messages, history_to_chatbot_messages, remove_code_block, parse_transformers_js_output, format_transformers_js_output, ) from deploy import send_to_sandbox History = List[Tuple[str, str]] SUPPORTED_LANGUAGES = [ "python", "c", "cpp", "markdown", "latex", "json", "html", "css", "javascript", "jinja2", "typescript", "yaml", "dockerfile", "shell", "r", "sql", "sql-msSQL", "sql-mySQL", "sql-mariaDB", "sql-sqlite", "sql-cassandra", "sql-plSQL", "sql-hive", "sql-pgSQL", "sql-gql", "sql-gpSQL", "sql-sparkSQL", "sql-esper", ] # ────────────────────────────────────────────────────────────────────────────── # Generation callback # ────────────────────────────────────────────────────────────────────────────── def generation_code( query: Optional[str], file_path: Optional[str], website_url: Optional[str], current_model: Dict[str, Any], enable_search: bool, language: str, history: History | None, ) -> Tuple[str, History, str, List[Dict[str, str]]]: """Core back‑end that the “Generate Code” button calls.""" query = (query or "").strip() history = history or [] # Pick proper system prompt if language == "html": system_prompt = HTML_SYSTEM_PROMPT elif language == "transformers.js": system_prompt = TRANSFORMERS_JS_SYSTEM_PROMPT else: system_prompt = ( f"You are an expert {language} developer. " f"Write clean, idiomatic {language} based on the user request." ) # Route to provider model_id = current_model["id"] if model_id.startswith(("openai/", "gpt-")): provider = "openai" elif model_id.startswith(("gemini/", "google/")): provider = "gemini" elif model_id.startswith("fireworks-ai/"): provider = "fireworks-ai" else: provider = "auto" # Build message list messages = history_to_messages(history, system_prompt) context_parts: List[str] = [query] if file_path: context_parts.append("[Attached file]") context_parts.append(extract_text_from_file(file_path)[:5_000]) if website_url: html = extract_website_content(website_url) if not html.startswith("Error"): context_parts.append("[Website content]") context_parts.append(html[:8_000]) user_msg = "\n\n".join(context_parts) user_msg = enhance_query_with_search(user_msg, enable_search) messages.append({"role": "user", "content": user_msg}) # Call model try: client = get_inference_client(model_id, provider) resp = client.chat.completions.create( model = model_id, messages = messages, max_tokens = 16_000, temperature= 0.1, ) answer = resp.choices[0].message.content except Exception as exc: err = f"❌ **Error**\n```\n{exc}\n```" history.append((query, err)) return "", history, "", history_to_chatbot_messages(history) # Post‑process if language == "transformers.js": files = parse_transformers_js_output(answer) code = format_transformers_js_output(files) preview = send_to_sandbox(files.get("index.html", "")) else: cleaned = remove_code_block(answer) if history and not history[-1][1].startswith("❌"): cleaned = apply_search_replace_changes(history[-1][1], cleaned) code = cleaned preview = send_to_sandbox(code) if language == "html" else "" history.append((query, code)) chat_history = history_to_chatbot_messages(history) return code, history, preview, chat_history # ────────────────────────────────────────────────────────────────────────────── # Gradio UI # ────────────────────────────────────────────────────────────────────────────── CUSTOM_CSS = """ body{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,sans-serif;} .gradio-container{background:#f9fafb;} #gen-btn{box-shadow:0 2px 4px rgba(0,0,0,.08);} """ with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo"), title="AnyCoder AI", css=CUSTOM_CSS) as demo: state_history: gr.State = gr.State([]) state_model : gr.State = gr.State(AVAILABLE_MODELS[0]) gr.Markdown("## 🏢 **AnyCoder AI**\nYour AI partner for generating, modifying  and  understanding code.", elem_id="header") # 1 · MODEL gr.Markdown("### 1 · Model") model_dd = gr.Dropdown( choices=[m["name"] for m in AVAILABLE_MODELS], value=AVAILABLE_MODELS[0]["name"], label="AI Model", ) # 2 · CONTEXT gr.Markdown("### 2 · Context") with gr.Tabs(): with gr.Tab("Prompt"): prompt_tb = gr.Textbox(lines=6, placeholder="Describe what you need…") with gr.Tab("File"): file_upl = gr.File(label="Reference file") import_btn= gr.Button("Import Project", variant="secondary") import_btn.click(lambda: print("import clicked"), outputs=[]) with gr.Tab("Website"): url_tb = gr.Textbox(placeholder="https://example.com") # 3 · OUTPUT gr.Markdown("### 3 · Output") lang_dd = gr.Dropdown(SUPPORTED_LANGUAGES, value="html", label="Target Language") search_ck = gr.Checkbox(label="Enable Tavily Web Search") with gr.Row(): clear_btn = gr.Button("Clear Session", variant="secondary") gen_btn = gr.Button("Generate Code", elem_id="gen-btn") # OUTPUT PANELS with gr.Tabs(): with gr.Tab("Code"): code_out = gr.Code(language="html", interactive=True, lines=25) with gr.Tab("Live Preview"): preview = gr.HTML() with gr.Tab("History"): chatbox = gr.Chatbot(type="messages") # ── CALLBACKS ────────────────────────────────────────────── model_dd.change(lambda n: next(m for m in AVAILABLE_MODELS if m["name"] == n), inputs=model_dd, outputs=state_model) gen_btn.click( fn=generation_code, inputs=[prompt_tb, file_upl, url_tb, state_model, search_ck, lang_dd, state_history], outputs=[code_out, state_history, preview, chatbox], ) clear_btn.click( lambda: ("", None, "", [], "", "", []), outputs=[prompt_tb, file_upl, url_tb, state_history, code_out, preview, chatbox], queue=False, ) if __name__ == "__main__": demo.queue().launch()