Update services.py
Browse files- services.py +73 -68
services.py
CHANGED
@@ -2,108 +2,113 @@
|
|
2 |
|
3 |
"""
|
4 |
Manages interactions with external services like LLM providers and web search APIs.
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
8 |
"""
|
9 |
import os
|
10 |
import logging
|
11 |
from typing import Dict, Any, Generator, List
|
12 |
|
13 |
from dotenv import load_dotenv
|
|
|
|
|
14 |
from huggingface_hub import InferenceClient
|
15 |
from tavily import TavilyClient
|
|
|
|
|
16 |
|
17 |
-
# --- Setup Logging ---
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
19 |
-
|
20 |
-
# --- Load Environment Variables ---
|
21 |
load_dotenv()
|
|
|
|
|
22 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
23 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
24 |
-
|
25 |
-
|
26 |
-
raise ValueError("HF_TOKEN environment variable is not set. Please get a token from https://huggingface.co/settings/tokens")
|
27 |
|
28 |
# --- Type Definitions ---
|
29 |
Messages = List[Dict[str, Any]]
|
30 |
|
31 |
class LLMService:
|
32 |
-
"""A wrapper for
|
33 |
-
def __init__(self, api_key: str = HF_TOKEN):
|
34 |
-
if not api_key:
|
35 |
-
raise ValueError("Hugging Face API key is required.")
|
36 |
-
self.api_key = api_key
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
def generate_code_stream(
|
43 |
-
self, model_id: str, messages: Messages,
|
44 |
) -> Generator[str, None, None]:
|
45 |
"""
|
46 |
-
Streams code generation
|
47 |
-
|
48 |
"""
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
try:
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
yield chunk.choices[0].delta.content
|
|
|
60 |
except Exception as e:
|
61 |
-
logging.error(f"LLM API Error
|
62 |
-
yield f"Error
|
63 |
-
# Re-raise or handle as appropriate for your application flow
|
64 |
-
# For this app, we yield an error message to the user.
|
65 |
|
66 |
|
67 |
class SearchService:
|
68 |
-
|
69 |
def __init__(self, api_key: str = TAVILY_API_KEY):
|
70 |
-
|
71 |
-
logging.warning("TAVILY_API_KEY not set. Web search will be disabled.")
|
72 |
-
self.client = None
|
73 |
-
else:
|
74 |
-
try:
|
75 |
-
self.client = TavilyClient(api_key=api_key)
|
76 |
-
except Exception as e:
|
77 |
-
logging.error(f"Failed to initialize Tavily client: {e}")
|
78 |
-
self.client = None
|
79 |
-
|
80 |
def is_available(self) -> bool:
|
81 |
-
|
82 |
-
return self.client is not None
|
83 |
-
|
84 |
def search(self, query: str, max_results: int = 5) -> str:
|
85 |
-
|
86 |
-
Performs a web search and returns a formatted string of results.
|
87 |
-
"""
|
88 |
-
if not self.is_available():
|
89 |
-
return "Web search is not available."
|
90 |
-
|
91 |
-
try:
|
92 |
-
response = self.client.search(
|
93 |
-
query,
|
94 |
-
search_depth="advanced",
|
95 |
-
max_results=min(max(1, max_results), 10)
|
96 |
-
)
|
97 |
-
results = [
|
98 |
-
f"Title: {res.get('title', 'N/A')}\nURL: {res.get('url', 'N/A')}\nContent: {res.get('content', 'N/A')}"
|
99 |
-
for res in response.get('results', [])
|
100 |
-
]
|
101 |
-
return "Web Search Results:\n\n" + "\n---\n".join(results) if results else "No search results found."
|
102 |
-
except Exception as e:
|
103 |
-
logging.error(f"Tavily search error: {e}")
|
104 |
-
return f"Search error: {str(e)}"
|
105 |
|
106 |
# --- Singleton Instances ---
|
107 |
-
# These instances can be imported and used throughout the application.
|
108 |
llm_service = LLMService()
|
109 |
search_service = SearchService()
|
|
|
2 |
|
3 |
"""
|
4 |
Manages interactions with external services like LLM providers and web search APIs.
|
5 |
+
This module has been refactored to support multiple LLM providers:
|
6 |
+
- Hugging Face (for standard and multimodal models)
|
7 |
+
- Groq (for high-speed inference)
|
8 |
+
- Fireworks AI
|
9 |
"""
|
10 |
import os
|
11 |
import logging
|
12 |
from typing import Dict, Any, Generator, List
|
13 |
|
14 |
from dotenv import load_dotenv
|
15 |
+
|
16 |
+
# Import all necessary clients
|
17 |
from huggingface_hub import InferenceClient
|
18 |
from tavily import TavilyClient
|
19 |
+
from groq import Groq
|
20 |
+
import fireworks.client as Fireworks
|
21 |
|
22 |
+
# --- Setup Logging & Environment ---
|
23 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
|
24 |
load_dotenv()
|
25 |
+
|
26 |
+
# --- API Keys ---
|
27 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
28 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
29 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
30 |
+
FIREWORKS_API_KEY = os.getenv("FIREWORKS_API_KEY")
|
|
|
31 |
|
32 |
# --- Type Definitions ---
|
33 |
Messages = List[Dict[str, Any]]
|
34 |
|
35 |
class LLMService:
|
36 |
+
"""A multi-provider wrapper for LLM Inference APIs."""
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
def __init__(self):
|
39 |
+
# Initialize clients if their API keys are available
|
40 |
+
self.hf_client = InferenceClient(token=HF_TOKEN) if HF_TOKEN else None
|
41 |
+
self.groq_client = Groq(api_key=GROQ_API_KEY) if GROQ_API_KEY else None
|
42 |
+
self.fireworks_client = Fireworks if FIREWORKS_API_KEY else None
|
43 |
+
if self.fireworks_client:
|
44 |
+
self.fireworks_client.api_key = FIREWORKS_API_KEY
|
45 |
|
46 |
def generate_code_stream(
|
47 |
+
self, model_id: str, messages: Messages, max_tokens: int = 8000
|
48 |
) -> Generator[str, None, None]:
|
49 |
"""
|
50 |
+
Streams code generation, dispatching to the correct provider based on model_id.
|
51 |
+
The model_id format is 'provider/model-name' or a full HF model_id.
|
52 |
"""
|
53 |
+
provider = "huggingface" # Default provider
|
54 |
+
model_name = model_id
|
55 |
+
|
56 |
+
if '/' in model_id:
|
57 |
+
parts = model_id.split('/', 1)
|
58 |
+
if parts[0] in ['groq', 'fireworks', 'huggingface']:
|
59 |
+
provider = parts[0]
|
60 |
+
model_name = parts[1]
|
61 |
+
|
62 |
+
logging.info(f"Dispatching to provider: {provider} for model: {model_name}")
|
63 |
+
|
64 |
try:
|
65 |
+
# --- Groq Provider ---
|
66 |
+
if provider == 'groq':
|
67 |
+
if not self.groq_client:
|
68 |
+
raise ValueError("Groq API key is not configured.")
|
69 |
+
stream = self.groq_client.chat.completions.create(
|
70 |
+
model=model_name, messages=messages, stream=True, max_tokens=max_tokens
|
71 |
+
)
|
72 |
+
for chunk in stream:
|
73 |
+
if chunk.choices[0].delta.content:
|
74 |
+
yield chunk.choices[0].delta.content
|
75 |
+
|
76 |
+
# --- Fireworks AI Provider ---
|
77 |
+
elif provider == 'fireworks':
|
78 |
+
if not self.fireworks_client:
|
79 |
+
raise ValueError("Fireworks AI API key is not configured.")
|
80 |
+
stream = self.fireworks_client.ChatCompletion.create(
|
81 |
+
model=model_name, messages=messages, stream=True, max_tokens=max_tokens
|
82 |
+
)
|
83 |
+
for chunk in stream:
|
84 |
+
if chunk.choices[0].delta.content:
|
85 |
+
yield chunk.choices[0].delta.content
|
86 |
+
|
87 |
+
# --- Hugging Face Provider (Default) ---
|
88 |
+
else:
|
89 |
+
if not self.hf_client:
|
90 |
+
raise ValueError("Hugging Face API token is not configured.")
|
91 |
+
# For HF, the model_name is the full original model_id
|
92 |
+
stream = self.hf_client.chat_completion(
|
93 |
+
model=model_name, messages=messages, stream=True, max_tokens=max_tokens
|
94 |
+
)
|
95 |
+
for chunk in stream:
|
96 |
yield chunk.choices[0].delta.content
|
97 |
+
|
98 |
except Exception as e:
|
99 |
+
logging.error(f"LLM API Error with provider {provider}: {e}")
|
100 |
+
yield f"Error from {provider.capitalize()}: {str(e)}"
|
|
|
|
|
101 |
|
102 |
|
103 |
class SearchService:
|
104 |
+
# (This class remains unchanged)
|
105 |
def __init__(self, api_key: str = TAVILY_API_KEY):
|
106 |
+
# ... existing code ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
def is_available(self) -> bool:
|
108 |
+
# ... existing code ...
|
|
|
|
|
109 |
def search(self, query: str, max_results: int = 5) -> str:
|
110 |
+
# ... existing code ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
# --- Singleton Instances ---
|
|
|
113 |
llm_service = LLMService()
|
114 |
search_service = SearchService()
|