Delete inference.py
Browse files- inference.py +0 -97
inference.py
DELETED
@@ -1,97 +0,0 @@
|
|
1 |
-
# inference.py
|
2 |
-
# -------------------------------------------------------------
|
3 |
-
# Unified wrapper around hf_client.get_inference_client
|
4 |
-
# with automatic provider‑routing based on model registry
|
5 |
-
# (see models.py) and graceful fall‑back to Groq.
|
6 |
-
# -------------------------------------------------------------
|
7 |
-
from __future__ import annotations
|
8 |
-
|
9 |
-
from typing import Dict, Generator, List, Optional
|
10 |
-
|
11 |
-
from hf_client import get_inference_client
|
12 |
-
from models import find_model
|
13 |
-
|
14 |
-
|
15 |
-
# ------------------------------------------------------------------
|
16 |
-
# Helpers
|
17 |
-
# ------------------------------------------------------------------
|
18 |
-
def _resolve_provider(model_id: str, override: str | None) -> str:
|
19 |
-
"""
|
20 |
-
Decide which provider to use.
|
21 |
-
|
22 |
-
Priority:
|
23 |
-
1. Explicit *override* arg supplied by caller.
|
24 |
-
2. Model registry default_provider (see models.py).
|
25 |
-
3. "auto" – lets HF route to the first available provider.
|
26 |
-
"""
|
27 |
-
if override:
|
28 |
-
return override
|
29 |
-
|
30 |
-
meta = find_model(model_id)
|
31 |
-
return getattr(meta, "default_provider", "auto") if meta else "auto"
|
32 |
-
|
33 |
-
|
34 |
-
# ------------------------------------------------------------------
|
35 |
-
# Public API
|
36 |
-
# ------------------------------------------------------------------
|
37 |
-
def chat_completion(
|
38 |
-
model_id: str,
|
39 |
-
messages: List[Dict[str, str]],
|
40 |
-
provider: Optional[str] = None,
|
41 |
-
max_tokens: int = 4096,
|
42 |
-
**kwargs,
|
43 |
-
) -> str:
|
44 |
-
"""
|
45 |
-
Blocking convenience wrapper – returns the full assistant reply.
|
46 |
-
|
47 |
-
Parameters
|
48 |
-
----------
|
49 |
-
model_id : HF or provider‑qualified model path (e.g. "openai/gpt-4").
|
50 |
-
messages : OpenAI‑style [{'role': ..., 'content': ...}, …].
|
51 |
-
provider : Optional provider override; otherwise auto‑resolved.
|
52 |
-
max_tokens : Token budget for generation.
|
53 |
-
kwargs : Forward‑compatible extra arguments (temperature, etc.).
|
54 |
-
|
55 |
-
Returns
|
56 |
-
-------
|
57 |
-
str – assistant message content.
|
58 |
-
"""
|
59 |
-
client = get_inference_client(model_id, _resolve_provider(model_id, provider))
|
60 |
-
resp = client.chat.completions.create(
|
61 |
-
model=model_id,
|
62 |
-
messages=messages,
|
63 |
-
max_tokens=max_tokens,
|
64 |
-
**kwargs,
|
65 |
-
)
|
66 |
-
return resp.choices[0].message.content
|
67 |
-
|
68 |
-
|
69 |
-
def stream_chat_completion(
|
70 |
-
model_id: str,
|
71 |
-
messages: List[Dict[str, str]],
|
72 |
-
provider: Optional[str] = None,
|
73 |
-
max_tokens: int = 4096,
|
74 |
-
**kwargs,
|
75 |
-
) -> Generator[str, None, None]:
|
76 |
-
"""
|
77 |
-
Yield the assistant response *incrementally*.
|
78 |
-
|
79 |
-
Example
|
80 |
-
-------
|
81 |
-
>>> for chunk in stream_chat_completion(model, msgs):
|
82 |
-
... print(chunk, end='', flush=True)
|
83 |
-
"""
|
84 |
-
client = get_inference_client(model_id, _resolve_provider(model_id, provider))
|
85 |
-
stream = client.chat.completions.create(
|
86 |
-
model=model_id,
|
87 |
-
messages=messages,
|
88 |
-
max_tokens=max_tokens,
|
89 |
-
stream=True,
|
90 |
-
**kwargs,
|
91 |
-
)
|
92 |
-
|
93 |
-
# HF Inference returns chunks with .choices[0].delta.content
|
94 |
-
for chunk in stream:
|
95 |
-
delta: str | None = getattr(chunk.choices[0].delta, "content", None)
|
96 |
-
if delta:
|
97 |
-
yield delta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|