builder / app.py
mgbam's picture
Update app.py
bbec1c1 verified
raw
history blame
5.91 kB
# app.py (REVISED)
from typing import Optional, Dict, List, Tuple
import gradio as gr
from constants import HTML_SYSTEM_PROMPT, AVAILABLE_MODELS, DEMO_LIST
from hf_client import get_inference_client
from tavily_search import enhance_query_with_search
from utils import (
extract_text_from_file,
extract_website_content,
apply_search_replace_changes,
history_to_messages,
history_to_chatbot_messages,
remove_code_block,
parse_transformers_js_output,
format_transformers_js_output
)
from deploy import send_to_sandbox, load_project_from_url
# Type aliases
History = List[Tuple[str, str]]
# Core generation function
def generation_code(
query: Optional[str],
image: Optional[gr.Image],
file: Optional[str],
website_url: Optional[str],
_setting: Dict[str, str],
_history: Optional[History],
_current_model_name: str,
enable_search: bool,
language: str,
provider: str,
hf_token: str # <-- CHANGE 1: Accept the user's HF token from Gradio
) -> Tuple[str, History, str, List[Dict[str, str]]]:
# Initialize inputs
if query is None:
query = ''
if _history is None:
_history = []
# System prompt and history
system_prompt = _setting.get('system', HTML_SYSTEM_PROMPT)
messages = history_to_messages(_history, system_prompt)
# File input
if file:
text = extract_text_from_file(file)
query += f"\n\n[File content]\n{text[:5000]}"
# Website input
if website_url:
text = extract_website_content(website_url)
if not text.startswith('Error'):
query += f"\n\n[Website content]\n{text[:8000]}"
# Web search enhancement
final_query = enhance_query_with_search(query, enable_search)
messages.append({'role': 'user', 'content': final_query})
# Model inference
# <-- CHANGE 2: Pass the user's token to the client constructor
client = get_inference_client(_current_model_name, provider, user_token=hf_token)
resp = client.chat.completions.create(
model=_current_model_name,
messages=messages,
max_tokens=10000
)
content = resp.choices[0].message.content
# Post-processing
has_existing = bool(_history)
if language == 'transformers.js':
files = parse_transformers_js_output(content)
code_str = format_transformers_js_output(files)
preview_html = send_to_sandbox(files['index.html'])
else:
clean = remove_code_block(content)
if has_existing:
clean = apply_search_replace_changes(_history[-1][1], clean)
code_str = clean
preview_html = send_to_sandbox(clean) if language == 'html' else ''
# Update history
new_history = _history + [(query, code_str)]
chat_msgs = history_to_chatbot_messages(new_history)
# The return values are now correct for the updated UI components
return code_str, new_history, preview_html, chat_msgs
# Build UI
with gr.Blocks(theme=gr.themes.Base(), title="AnyCoder - AI Code Generator") as demo:
# State
history_state = gr.State([])
setting_state = gr.State({'system': HTML_SYSTEM_PROMPT})
model_state = gr.State(AVAILABLE_MODELS[0]['id'])
with gr.Sidebar():
gr.Markdown("## AnyCoder AI")
# Load project
url_in = gr.Textbox(label="Load HF Space URL", placeholder="https://huggingface.co/spaces/user/project")
load_btn = gr.Button("Import Project")
load_status = gr.Markdown(visible=False)
gr.Markdown("---")
# Inputs
prompt_in = gr.Textbox(label="Prompt", lines=3)
file_in = gr.File(label="Reference file")
image_in = gr.Image(label="Design image")
url_site = gr.Textbox(label="Website URL")
search_chk = gr.Checkbox(label="Enable Web Search")
language_dd = gr.Dropdown(
choices=["html", "python", "transformers.js"],
value="html",
label="Language"
)
model_dd = gr.Dropdown(
choices=[m['name'] for m in AVAILABLE_MODELS],
value=AVAILABLE_MODELS[0]['name'],
label="Model"
)
gen_btn = gr.Button("Generate")
clr_btn = gr.Button("Clear")
with gr.Column():
with gr.Tabs():
with gr.Tab("Code"):
code_out = gr.Code(label="Generated Code")
with gr.Tab("Preview"):
preview_out = gr.HTML(label="Live Preview")
with gr.Tab("History"):
# <-- CHANGE 3: Fix the Gradio error by specifying the modern 'messages' format.
chat_out = gr.Chatbot(label="History", type="messages")
# Events
load_btn.click(
fn=lambda u: load_project_from_url(u),
inputs=[url_in],
outputs=[load_status, code_out, preview_out, url_in, history_state, chat_out]
)
def on_model_change(name: str) -> str:
for m in AVAILABLE_MODELS:
if m['name'] == name:
return m['id']
return AVAILABLE_MODELS[0]['id']
model_dd.change(
fn=on_model_change,
inputs=[model_dd],
outputs=[model_state]
)
# Note: Gradio automatically passes the user's token to any function that
# has an 'hf_token' parameter. You do NOT need to add it to the 'inputs' list.
gen_btn.click(
fn=generation_code,
inputs=[
prompt_in, image_in, file_in, url_site,
setting_state, history_state, model_state,
search_chk, language_dd, gr.State('auto')
],
outputs=[code_out, history_state, preview_out, chat_out]
)
clr_btn.click(
fn=lambda: ([], [], "", []),
outputs=[history_state, chat_out, preview_out, code_out]
)
if __name__ == '__main__':
# <-- CHANGE 4: Launch with hf_token='must' to require login and get user tokens.
demo.queue().launch(hf_token="must")