builder / app.py
mgbam's picture
Update app.py
e7d5ce8 verified
raw
history blame
11.1 kB
"""
app.py
Main application file for AnyCoder, a Gradio-based AI code generation tool.
This application provides a user interface for generating code in various languages
using different AI models. It supports inputs from text prompts, files, images,
and websites, and includes features like web search enhancement and live code previews.
Structure:
- Imports & Configuration: Loads necessary libraries and constants.
- Helper Functions: Small utility functions supporting the UI logic.
- Core Application Logic: The main `generation_code` function that handles the AI interaction.
- UI Layout: Defines the Gradio interface using `gr.Blocks`.
- Event Wiring: Connects UI components to backend functions.
- Application Entry Point: Launches the Gradio app.
"""
import gradio as gr
from typing import Optional, Dict, List, Tuple, Any
# --- Local Module Imports ---
# These modules contain the application's configuration, clients, and utility functions.
# Note: These files (hf_client.py, etc.) must exist in the same directory.
from constants import SYSTEM_PROMPTS, AVAILABLE_MODELS, DEMO_LIST
from hf_client import get_inference_client
from tavily_search import enhance_query_with_search
from utils import (
extract_text_from_file,
extract_website_content,
apply_search_replace_changes,
history_to_messages,
history_to_chatbot_messages,
remove_code_block,
parse_transformers_js_output,
format_transformers_js_output
)
from deploy import send_to_sandbox, load_project_from_url
# --- Type Aliases and Constants ---
History = List[Tuple[str, str]]
Model = Dict[str, Any]
DEFAULT_SYSTEM_PROMPT = """
You are a helpful AI coding assistant. Your primary goal is to generate clean, correct, and efficient code based on the user's request.
- Follow the user's requirements precisely.
- If the user asks for a specific language, provide the code in that language.
- Enclose the final code in a single markdown code block (e.g., ```html ... ```).
- Do not include any conversational text, apologies, or explanations outside of the code block in your final response.
"""
# ==============================================================================
# HELPER FUNCTIONS
# ==============================================================================
def get_model_details(model_name: str) -> Optional[Model]:
"""Finds the full dictionary for a model given its name."""
for model in AVAILABLE_MODELS:
if model["name"] == model_name:
return model
return None
# ==============================================================================
# CORE APPLICATION LOGIC
# ==============================================================================
def generation_code(
query: Optional[str],
file: Optional[str],
website_url: Optional[str],
current_model: Model,
enable_search: bool,
language: str,
history: Optional[History],
hf_token: str,
) -> Tuple[str, History, str, List[Dict[str, str]]]:
"""
The main function to handle a user's code generation request.
"""
# 1. --- Initialization and Input Sanitization ---
query = query or ""
history = history or []
try:
# 2. --- System Prompt and Model Selection ---
system_prompt = SYSTEM_PROMPTS.get(language, DEFAULT_SYSTEM_PROMPT)
model_id = current_model["id"]
# Robustly determine the provider based on ID, falling back to a default
if model_id.startswith("openai/"):
provider = "openai"
elif model_id.startswith("gemini/"):
provider = "gemini"
elif model_id.startswith("fireworks-ai/"):
provider = "fireworks-ai"
else:
# Assume other models are served via standard Hugging Face TGI
provider = "huggingface"
# 3. --- Assemble Full Context for the AI ---
messages = history_to_messages(history, system_prompt)
context_query = query
if file:
text = extract_text_from_file(file)
context_query += f"\n\n[Attached File Content]\n{text[:5000]}"
if website_url:
text = extract_website_content(website_url)
if not text.startswith('Error'):
context_query += f"\n\n[Scraped Website Content]\n{text[:8000]}"
final_query = enhance_query_with_search(context_query, enable_search)
messages.append({'role': 'user', 'content': final_query})
# 4. --- AI Model Inference with Robust Error Handling ---
client = get_inference_client(model_id, provider, user_token=hf_token)
resp = client.chat.completions.create(
model=model_id,
messages=messages,
max_tokens=16384,
temperature=0.1
)
content = resp.choices[0].message.content
except Exception as e:
error_message = f"❌ **An error occurred:**\n\n```\n{str(e)}\n```\n\nPlease check your API keys, model selection, or try again."
history.append((query, error_message))
return "", history, "", history_to_chatbot_messages(history)
# 5. --- Post-process the AI's Output ---
if language == 'transformers.js':
files = parse_transformers_js_output(content)
code_str = format_transformers_js_output(files)
preview_html = send_to_sandbox(files.get('index.html', ''))
else:
clean_code = remove_code_block(content)
# Apply search/replace if a previous turn exists and contains valid code
if history and history[-1][1] and not history[-1][1].startswith("❌"):
code_str = apply_search_replace_changes(history[-1][1], clean_code)
else:
code_str = clean_code
preview_html = send_to_sandbox(code_str) if language == 'html' else ''
# 6. --- Update History and Final Outputs ---
updated_history = history + [(query, code_str)]
chat_messages = history_to_chatbot_messages(updated_history)
return code_str, updated_history, preview_html, chat_messages
# ==============================================================================
# UI LAYOUT & EVENT WIRING
# ==============================================================================
# Custom CSS for a more professional and modern look
CUSTOM_CSS = """
body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif; }
#main_title { text-align: center; font-size: 2.5rem; font-weight: 700; color: #1a202c; margin: 1.5rem 0 0.5rem 0; }
#subtitle { text-align: center; color: #4a5568; margin-bottom: 2.5rem; font-size: 1.1rem; }
.gradio-container { background-color: #f7fafc; }
/* Custom styling for the generate button to make it stand out */
#gen_btn { box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); }
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="AnyCoder - AI Code Generator", css=CUSTOM_CSS) as demo:
# --- State Management ---
history_state = gr.State([])
initial_model = AVAILABLE_MODELS[0]
model_state = gr.State(initial_model)
# --- UI Definition ---
gr.Markdown("# πŸš€ Shasha AI", elem_id="main_title")
gr.Markdown("Your personal AI partner for generating, modifying, and understanding code.", elem_id="subtitle")
with gr.Row(equal_height=False):
# Left column for controls and inputs
with gr.Column(scale=1):
gr.Markdown("### 1. Select Model")
model_choices = [model["name"] for model in AVAILABLE_MODELS]
model_dd = gr.Dropdown(
choices=model_choices,
value=initial_model["name"],
label="AI Model",
info="Different models have different strengths."
)
gr.Markdown("### 2. Provide Context")
with gr.Tabs():
with gr.Tab("πŸ“ Prompt"):
prompt_in = gr.Textbox(
label="Your Request",
lines=7,
placeholder="e.g., 'Create a modern, responsive landing page for a SaaS product.'",
show_label=False
)
with gr.Tab("πŸ“„ File"):
file_in = gr.File(label="Attach File (Optional)", type="filepath")
with gr.Tab("🌐 Website"):
url_site = gr.Textbox(label="Scrape Website (Optional)", placeholder="https://example.com")
gr.Markdown("### 3. Configure Output")
language_dd = gr.Dropdown(
choices=["html", "python", "transformers.js", "sql", "javascript", "css"],
value="html",
label="Target Language"
)
search_chk = gr.Checkbox(label="Enable Web Search", info="Enhances AI with real-time info.")
with gr.Row():
clr_btn = gr.Button("Clear Session", variant="secondary")
gen_btn = gr.Button("Generate Code", variant="primary", elem_id="gen_btn")
# Right column for outputs
with gr.Column(scale=2):
with gr.Tabs() as main_tabs:
with gr.Tab("πŸ’» Code", id="code_tab"):
code_out = gr.Code(label="Generated Code", language="html", interactive=True)
with gr.Tab("πŸ‘οΈ Live Preview", id="preview_tab"):
preview_out = gr.HTML(label="Live Preview")
with gr.Tab("πŸ“œ History", id="history_tab"):
chat_out = gr.Chatbot(label="Conversation History", type="messages")
# --- Event Wiring ---
def on_model_change(model_name: str) -> Dict:
"""Updates the model_state when the user selects a new model."""
model_details = get_model_details(model_name)
return model_details or initial_model
model_dd.change(fn=on_model_change, inputs=[model_dd], outputs=[model_state])
language_dd.change(fn=lambda lang: gr.update(language=lang), inputs=[language_dd], outputs=[code_out])
gen_btn.click(
fn=generation_code,
inputs=[
prompt_in, file_in, url_site,
model_state, search_chk, language_dd, history_state
],
outputs=[code_out, history_state, preview_out, chat_out]
)
def clear_session():
"""Resets all UI components and state to their initial values."""
return (
"", # prompt_in
None, # file_in
"", # url_site
[], # history_state
"", # code_out
"", # preview_out
[] # chat_out
)
clr_btn.click(
fn=clear_session,
outputs=[prompt_in, file_in, url_site, history_state, code_out, preview_out, chat_out],
queue=False
)
# ==============================================================================
# APPLICATION ENTRY POINT
# ==============================================================================
if __name__ == '__main__':
demo.queue().launch()