File size: 7,347 Bytes
2deb7a7 6dcd973 583310d 256b0b9 583310d 256b0b9 2deb7a7 256b0b9 583310d 256b0b9 583310d 6dcd973 583310d 256b0b9 583310d 10686a9 2deb7a7 583310d 2deb7a7 583310d 256b0b9 583310d 256b0b9 583310d 256b0b9 583310d 256b0b9 583310d 2deb7a7 583310d 2deb7a7 f7cf3be 583310d f7cf3be 2deb7a7 256b0b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# app.py
"""
Main application file for SHASHA AI, a Gradio-based AI code generation tool.
Provides a UI for generating code in many languages using various AI models.
Supports text prompts, file uploads, website scraping, optional web search,
and live previews of HTML output.
"""
import gradio as gr
from typing import Optional, Dict, List, Tuple, Any
# --- Local module imports ---
from constants import (
HTML_SYSTEM_PROMPT,
TRANSFORMERS_JS_SYSTEM_PROMPT,
AVAILABLE_MODELS,
DEMO_LIST,
)
from hf_client import get_inference_client
from tavily_search import enhance_query_with_search
from utils import (
extract_text_from_file,
extract_website_content,
apply_search_replace_changes,
history_to_messages,
history_to_chatbot_messages,
remove_code_block,
parse_transformers_js_output,
format_transformers_js_output,
)
from deploy import send_to_sandbox
# --- Type aliases ---
History = List[Tuple[str, str]]
Model = Dict[str, Any]
# --- Supported languages for dropdown ---
SUPPORTED_LANGUAGES = [
"python", "c", "cpp", "markdown", "latex", "json", "html", "css",
"javascript", "jinja2", "typescript", "yaml", "dockerfile", "shell",
"r", "sql", "sql-msSQL", "sql-mySQL", "sql-mariaDB", "sql-sqlite",
"sql-cassandra", "sql-plSQL", "sql-hive", "sql-pgSQL", "sql-gql",
"sql-gpSQL", "sql-sparkSQL", "sql-esper"
]
def get_model_details(name: str) -> Optional[Model]:
for m in AVAILABLE_MODELS:
if m["name"] == name:
return m
return None
def generation_code(
query: Optional[str],
file: Optional[str],
website_url: Optional[str],
current_model: Model,
enable_search: bool,
language: str,
history: Optional[History],
) -> Tuple[str, History, str, List[Dict[str, str]]]:
query = query or ""
history = history or []
try:
# Choose system prompt based on language
if language == "html":
system_prompt = HTML_SYSTEM_PROMPT
elif language == "transformers.js":
system_prompt = TRANSFORMERS_JS_SYSTEM_PROMPT
else:
# Generic fallback prompt
system_prompt = (
f"You are an expert {language} developer. "
f"Write clean, idiomatic {language} code based on the user's request."
)
model_id = current_model["id"]
# Determine provider
if model_id.startswith("openai/") or model_id in {"gpt-4", "gpt-3.5-turbo"}:
provider = "openai"
elif model_id.startswith("gemini/") or model_id.startswith("google/"):
provider = "gemini"
elif model_id.startswith("fireworks-ai/"):
provider = "fireworks-ai"
else:
provider = "auto"
# Build message history
msgs = history_to_messages(history, system_prompt)
context = query
if file:
ftext = extract_text_from_file(file)
context += f"\n\n[Attached file]\n{ftext[:5000]}"
if website_url:
wtext = extract_website_content(website_url)
if not wtext.startswith("Error"):
context += f"\n\n[Website content]\n{wtext[:8000]}"
final_q = enhance_query_with_search(context, enable_search)
msgs.append({"role": "user", "content": final_q})
# Call the model
client = get_inference_client(model_id, provider)
resp = client.chat.completions.create(
model=model_id,
messages=msgs,
max_tokens=16000,
temperature=0.1
)
content = resp.choices[0].message.content
except Exception as e:
err = f"β **Error:**\n```\n{e}\n```"
history.append((query, err))
return "", history, "", history_to_chatbot_messages(history)
# Process model output
if language == "transformers.js":
files = parse_transformers_js_output(content)
code = format_transformers_js_output(files)
preview = send_to_sandbox(files.get("index.html", ""))
else:
cleaned = remove_code_block(content)
if history and history[-1][1] and not history[-1][1].startswith("β"):
code = apply_search_replace_changes(history[-1][1], cleaned)
else:
code = cleaned
preview = send_to_sandbox(code) if language == "html" else ""
new_hist = history + [(query, code)]
chat = history_to_chatbot_messages(new_hist)
return code, new_hist, preview, chat
# --- Custom CSS ---
CUSTOM_CSS = """
body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; }
#main_title { text-align: center; font-size: 2.5rem; margin-top: 1.5rem; }
#subtitle { text-align: center; color: #4a5568; margin-bottom: 2.5rem; }
.gradio-container { background-color: #f7fafc; }
#gen_btn { box-shadow: 0 4px 6px rgba(0,0,0,0.1); }
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), css=CUSTOM_CSS, title="Shasha AI") as demo:
history_state = gr.State([])
initial_model = AVAILABLE_MODELS[0]
model_state = gr.State(initial_model)
gr.Markdown("# π Shasha AI", elem_id="main_title")
gr.Markdown("Your AI partner for generating, modifying, and understanding code.", elem_id="subtitle")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Select Model")
model_dd = gr.Dropdown(
choices=[m["name"] for m in AVAILABLE_MODELS],
value=initial_model["name"],
label="AI Model"
)
gr.Markdown("### 2. Provide Context")
with gr.Tabs():
with gr.Tab("π Prompt"):
prompt_in = gr.Textbox(lines=7, placeholder="Describe your request...", show_label=False)
with gr.Tab("π File"):
file_in = gr.File(type="filepath")
with gr.Tab("π Website"):
url_in = gr.Textbox(placeholder="https://example.com")
gr.Markdown("### 3. Configure Output")
lang_dd = gr.Dropdown(SUPPORTED_LANGUAGES, value="html", label="Target Language")
search_chk = gr.Checkbox(label="Enable Web Search")
with gr.Row():
clr_btn = gr.Button("Clear Session", variant="secondary")
gen_btn = gr.Button("Generate Code", variant="primary", elem_id="gen_btn")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("π» Code"):
code_out = gr.Code(language="html", interactive=True)
with gr.Tab("ποΈ Live Preview"):
preview_out = gr.HTML()
with gr.Tab("π History"):
chat_out = gr.Chatbot(type="messages")
model_dd.change(lambda n: get_model_details(n) or initial_model, inputs=[model_dd], outputs=[model_state])
gen_btn.click(
fn=generation_code,
inputs=[prompt_in, file_in, url_in, model_state, search_chk, lang_dd, history_state],
outputs=[code_out, history_state, preview_out, chat_out],
)
clr_btn.click(
lambda: ("", None, "", [], "", "", []),
outputs=[prompt_in, file_in, url_in, history_state, code_out, preview_out, chat_out],
queue=False,
)
if __name__ == "__main__":
demo.queue().launch()
|