Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,168 +1,118 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
try:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
# Image Upload Section
|
120 |
-
st.subheader("📤 Upload a Cancer Image")
|
121 |
-
uploaded_image = st.file_uploader("Choose an image file...", type=["png", "jpg", "jpeg"])
|
122 |
-
|
123 |
-
if uploaded_image is not None:
|
124 |
-
try:
|
125 |
-
# Open the uploaded image
|
126 |
-
image = Image.open(uploaded_image).convert("RGB")
|
127 |
-
|
128 |
-
# Display the uploaded image
|
129 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
130 |
-
|
131 |
-
# Process the image
|
132 |
-
st.markdown("### 🛠️ Image Processing")
|
133 |
-
processed_features = process_image(image)
|
134 |
-
|
135 |
-
# Load the model pipeline
|
136 |
-
st.markdown("### 🔍 Classifying the Image")
|
137 |
-
model_pipeline = load_pipeline()
|
138 |
-
|
139 |
-
# Classify the image
|
140 |
-
with st.spinner("Classifying..."):
|
141 |
-
label, confidence = classify_image(image, model_pipeline)
|
142 |
-
|
143 |
-
if label and confidence:
|
144 |
-
st.write(f"**Prediction:** {label}")
|
145 |
-
st.write(f"**Confidence:** {confidence:.2%}")
|
146 |
-
|
147 |
-
# Highlight prediction confidence
|
148 |
-
if confidence > 0.80:
|
149 |
-
st.success("High confidence in the prediction.")
|
150 |
-
elif confidence > 0.50:
|
151 |
-
st.warning("Moderate confidence in the prediction.")
|
152 |
-
else:
|
153 |
-
st.error("Low confidence in the prediction.")
|
154 |
-
|
155 |
-
except Exception as e:
|
156 |
-
st.error(f"An unexpected error occurred: {e}")
|
157 |
-
traceback.print_exc()
|
158 |
-
else:
|
159 |
-
st.info("Upload an image to start the classification.")
|
160 |
-
|
161 |
-
# =======================
|
162 |
-
# Footer
|
163 |
-
# =======================
|
164 |
-
|
165 |
-
st.markdown("""
|
166 |
-
---
|
167 |
-
**AI Cancer Detection Platform** | This application is for informational purposes only and is not intended for medical diagnosis.
|
168 |
-
""")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoModelForImageClassification, AutoFeatureExtractor
|
3 |
+
from PIL import Image
|
4 |
+
import openai
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# =======================
|
9 |
+
# Streamlit Page Config (MUST BE FIRST)
|
10 |
+
# =======================
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="AI-Powered Skin Cancer Detection",
|
13 |
+
page_icon="🩺",
|
14 |
+
layout="wide",
|
15 |
+
initial_sidebar_state="expanded"
|
16 |
+
)
|
17 |
+
|
18 |
+
# =======================
|
19 |
+
# OpenAI API Configuration
|
20 |
+
# =======================
|
21 |
+
openai.api_key = os.getenv("OPENAI_API_KEY", "your_openai_api_key_here")
|
22 |
+
|
23 |
+
# =======================
|
24 |
+
# Load Model with PyTorch
|
25 |
+
# =======================
|
26 |
+
@st.cache_resource
|
27 |
+
def load_model():
|
28 |
+
"""
|
29 |
+
Load the pre-trained skin cancer classification model using PyTorch.
|
30 |
+
Use the AutoModelForImageClassification and AutoFeatureExtractor for explicit local caching.
|
31 |
+
"""
|
32 |
+
try:
|
33 |
+
extractor = AutoFeatureExtractor.from_pretrained("Anwarkh1/Skin_Cancer-Image_Classification")
|
34 |
+
model = AutoModelForImageClassification.from_pretrained("Anwarkh1/Skin_Cancer-Image_Classification")
|
35 |
+
return pipeline("image-classification", model=model, feature_extractor=extractor, framework="pt")
|
36 |
+
except Exception as e:
|
37 |
+
st.error(f"Error loading the model: {e}")
|
38 |
+
return None
|
39 |
+
|
40 |
+
model = load_model()
|
41 |
+
|
42 |
+
# =======================
|
43 |
+
# OpenAI Explanation Function
|
44 |
+
# =======================
|
45 |
+
def generate_openai_explanation(label, confidence):
|
46 |
+
"""
|
47 |
+
Generate a detailed explanation for the classification result using OpenAI's GPT model.
|
48 |
+
"""
|
49 |
+
prompt = (
|
50 |
+
f"The AI model has classified an image of a skin lesion as **{label}** with a confidence of **{confidence:.2%}**.\n"
|
51 |
+
f"Explain what this classification means, including potential characteristics of this lesion type, "
|
52 |
+
f"what steps a patient should take next, and how the AI might have arrived at this conclusion. "
|
53 |
+
f"Use language that is easy for a non-medical audience to understand."
|
54 |
+
)
|
55 |
+
try:
|
56 |
+
response = openai.Completion.create(
|
57 |
+
model="text-davinci-003", # Replace with "gpt-4" if available
|
58 |
+
prompt=prompt,
|
59 |
+
max_tokens=300,
|
60 |
+
temperature=0.7
|
61 |
+
)
|
62 |
+
return response.choices[0].text.strip()
|
63 |
+
except Exception as e:
|
64 |
+
return f"Error generating explanation: {e}"
|
65 |
+
|
66 |
+
# =======================
|
67 |
+
# Streamlit App Title and Sidebar
|
68 |
+
# =======================
|
69 |
+
st.title("🔍 AI-Powered Skin Cancer Classification and Explanation")
|
70 |
+
st.write("Upload an image of a skin lesion, and the AI model will classify it and provide a detailed explanation.")
|
71 |
+
|
72 |
+
st.sidebar.info("""
|
73 |
+
**AI Cancer Detection Platform**
|
74 |
+
This application uses AI to classify skin lesions and generate detailed explanations for informational purposes.
|
75 |
+
It is not intended for medical diagnosis. Always consult a healthcare professional for medical advice.
|
76 |
+
""")
|
77 |
+
|
78 |
+
# =======================
|
79 |
+
# File Upload and Prediction
|
80 |
+
# =======================
|
81 |
+
uploaded_image = st.file_uploader("Upload a skin lesion image (PNG, JPG, JPEG)", type=["png", "jpg", "jpeg"])
|
82 |
+
|
83 |
+
if uploaded_image:
|
84 |
+
# Display uploaded image
|
85 |
+
image = Image.open(uploaded_image).convert("RGB")
|
86 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
87 |
+
|
88 |
+
# Perform classification
|
89 |
+
if model is None:
|
90 |
+
st.error("Model could not be loaded. Please try again later.")
|
91 |
+
else:
|
92 |
+
with st.spinner("Classifying the image..."):
|
93 |
+
try:
|
94 |
+
results = model(image)
|
95 |
+
label = results[0]['label']
|
96 |
+
confidence = results[0]['score']
|
97 |
+
|
98 |
+
# Display prediction results
|
99 |
+
st.markdown(f"### Prediction: **{label}**")
|
100 |
+
st.markdown(f"### Confidence: **{confidence:.2%}**")
|
101 |
+
|
102 |
+
# Provide confidence-based insights
|
103 |
+
if confidence >= 0.8:
|
104 |
+
st.success("High confidence in the prediction.")
|
105 |
+
elif confidence >= 0.5:
|
106 |
+
st.warning("Moderate confidence in the prediction. Consider additional verification.")
|
107 |
+
else:
|
108 |
+
st.error("Low confidence in the prediction. Results should be interpreted with caution.")
|
109 |
+
|
110 |
+
# Generate explanation
|
111 |
+
with st.spinner("Generating a detailed explanation..."):
|
112 |
+
explanation = generate_openai_explanation(label, confidence)
|
113 |
+
|
114 |
+
st.markdown("### Explanation")
|
115 |
+
st.write(explanation)
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
st.error(f"Error during classification: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|