mgbam's picture
Update app.py
db88443 verified
raw
history blame
1.64 kB
import gradio as gr
from transformers import pipeline
from PIL import Image
import requests
# Load pre-trained model for cancer image classification
classifier = pipeline("image-classification", model="Anwarkh1/Skin_Cancer-Image_Classification")
def classify_image(image):
results = classifier(image)
label = results[0]['label']
confidence = results[0]['score']
explanation = f"The model predicts **{label}** with a confidence of {confidence:.2%}."
return label, confidence, explanation
def fetch_research():
url = "https://api.semanticscholar.org/graph/v1/paper/search"
params = {"query": "cancer research", "fields": "title,abstract,url", "limit": 5}
response = requests.get(url, params=params)
papers = response.json().get("data", [])
return "\n".join([f"{paper['title']}: {paper['url']}" for paper in papers])
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# AI-Powered Universal Cancer Detection and Research Assistant 🌍🩺")
with gr.Tab("Cancer Detection"):
image = gr.Image(label="Upload Cancer Image")
label = gr.Textbox(label="Predicted Label")
confidence = gr.Slider(label="Confidence")
explanation = gr.Textbox(label="Explanation")
detect_btn = gr.Button("Classify")
detect_btn.click(classify_image, inputs=[image], outputs=[label, confidence, explanation])
with gr.Tab("Research Papers"):
fetch_btn = gr.Button("Fetch Research Papers")
papers = gr.Textbox(label="Latest Research Papers", lines=5)
fetch_btn.click(fetch_research, inputs=[], outputs=papers)
demo.launch()