Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,8 @@ import streamlit as st
|
|
2 |
import requests
|
3 |
import chromadb
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
-
|
6 |
-
import
|
7 |
|
8 |
# Initialize embedding model
|
9 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
@@ -13,6 +13,18 @@ DB_PATH = "./recipe_db"
|
|
13 |
client = chromadb.PersistentClient(path=DB_PATH)
|
14 |
collection = client.get_or_create_collection("recipes")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Check if ChromaDB has data, if not, insert sample data
|
17 |
if not collection.count():
|
18 |
sample_recipes = [
|
@@ -22,29 +34,27 @@ if not collection.count():
|
|
22 |
{"name": "Chapli Kebab", "city": "Peshawar", "price": 400, "image": "https://example.com/chapli.jpg"},
|
23 |
{"name": "Saag", "city": "Multan", "price": 600, "image": "https://example.com/saag.jpg"}
|
24 |
]
|
25 |
-
|
26 |
for recipe in sample_recipes:
|
27 |
embedding = model.encode(recipe["city"]).tolist()
|
28 |
collection.add(
|
29 |
-
ids=[recipe["name"]],
|
30 |
embeddings=[embedding],
|
31 |
documents=[json.dumps(recipe)] # Convert dictionary to string
|
32 |
)
|
33 |
print("Sample data added to ChromaDB")
|
34 |
|
35 |
-
# Function to
|
36 |
-
def
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
restaurant_list = []
|
42 |
-
if
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
restaurant_list.append(name)
|
48 |
return restaurant_list
|
49 |
|
50 |
# Streamlit UI
|
@@ -53,12 +63,15 @@ st.title("Pakistani Famous Recipes Finder 🍛")
|
|
53 |
# User inputs city
|
54 |
city = st.text_input("Enter a Pakistani City (e.g., Lahore, Karachi, Islamabad)").strip()
|
55 |
|
|
|
|
|
|
|
56 |
# Optional: User inputs recipe (not mandatory)
|
57 |
-
query = st.
|
58 |
|
59 |
if st.button("Find Recipes & Restaurants"):
|
60 |
if city:
|
61 |
-
if query:
|
62 |
# Retrieve specific recipe info from vector DB
|
63 |
query_embedding = model.encode(query).tolist()
|
64 |
results = collection.query(query_embedding, n_results=5)
|
@@ -69,11 +82,11 @@ if st.button("Find Recipes & Restaurants"):
|
|
69 |
for recipe_json in doc:
|
70 |
recipe = json.loads(recipe_json) # Convert back to dictionary
|
71 |
st.write(f"**Recipe:** {recipe['name']}")
|
72 |
-
st.image(recipe["image"], caption=recipe["name"],
|
73 |
st.write(f"Price: {recipe['price']} PKR")
|
74 |
|
75 |
-
# Fetch restaurant data
|
76 |
-
restaurants =
|
77 |
if restaurants:
|
78 |
st.subheader("Available at These Restaurants:")
|
79 |
for r in restaurants:
|
@@ -94,9 +107,15 @@ if st.button("Find Recipes & Restaurants"):
|
|
94 |
for recipe_json in doc:
|
95 |
recipe = json.loads(recipe_json) # Convert back to dictionary
|
96 |
st.write(f"**Recipe:** {recipe['name']}")
|
97 |
-
st.image(recipe["image"], caption=recipe["name"],
|
98 |
st.write(f"Price: {recipe['price']} PKR")
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
else:
|
102 |
st.warning("Please enter a city name.")
|
|
|
2 |
import requests
|
3 |
import chromadb
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
+
import json
|
6 |
+
import googlemaps
|
7 |
|
8 |
# Initialize embedding model
|
9 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
13 |
client = chromadb.PersistentClient(path=DB_PATH)
|
14 |
collection = client.get_or_create_collection("recipes")
|
15 |
|
16 |
+
# Google Places API Key (Replace with your key)
|
17 |
+
GOOGLE_API_KEY = "YOUR_GOOGLE_PLACES_API_KEY"
|
18 |
+
gmaps = googlemaps.Client(key=GOOGLE_API_KEY)
|
19 |
+
|
20 |
+
# Predefined Recipe Categories
|
21 |
+
recipe_categories = {
|
22 |
+
"Desi": ["Nihari", "Karahi", "Biryani", "Haleem", "Saag"],
|
23 |
+
"Fast Food": ["Burger", "Pizza", "Fries", "Shawarma"],
|
24 |
+
"BBQ": ["Tikka", "Seekh Kebab", "Malai Boti"],
|
25 |
+
"Seafood": ["Prawn Karahi", "Grilled Fish", "Fried Fish"]
|
26 |
+
}
|
27 |
+
|
28 |
# Check if ChromaDB has data, if not, insert sample data
|
29 |
if not collection.count():
|
30 |
sample_recipes = [
|
|
|
34 |
{"name": "Chapli Kebab", "city": "Peshawar", "price": 400, "image": "https://example.com/chapli.jpg"},
|
35 |
{"name": "Saag", "city": "Multan", "price": 600, "image": "https://example.com/saag.jpg"}
|
36 |
]
|
37 |
+
|
38 |
for recipe in sample_recipes:
|
39 |
embedding = model.encode(recipe["city"]).tolist()
|
40 |
collection.add(
|
41 |
+
ids=[recipe["name"]],
|
42 |
embeddings=[embedding],
|
43 |
documents=[json.dumps(recipe)] # Convert dictionary to string
|
44 |
)
|
45 |
print("Sample data added to ChromaDB")
|
46 |
|
47 |
+
# Function to fetch restaurant data using Google Places API
|
48 |
+
def get_restaurants(city, recipe):
|
49 |
+
query = f"{recipe} restaurant in {city}"
|
50 |
+
places_result = gmaps.places(query=query, type="restaurant")
|
51 |
+
|
|
|
52 |
restaurant_list = []
|
53 |
+
if "results" in places_result:
|
54 |
+
for place in places_result["results"][:5]: # Get top 5 restaurants
|
55 |
+
name = place.get("name", "Unknown Restaurant")
|
56 |
+
address = place.get("vicinity", "Unknown Address")
|
57 |
+
restaurant_list.append(f"{name} - {address}")
|
|
|
58 |
return restaurant_list
|
59 |
|
60 |
# Streamlit UI
|
|
|
63 |
# User inputs city
|
64 |
city = st.text_input("Enter a Pakistani City (e.g., Lahore, Karachi, Islamabad)").strip()
|
65 |
|
66 |
+
# User selects recipe type
|
67 |
+
recipe_type = st.selectbox("Select Recipe Type", options=list(recipe_categories.keys()))
|
68 |
+
|
69 |
# Optional: User inputs recipe (not mandatory)
|
70 |
+
query = st.selectbox("Select a Recipe (Optional)", ["Any"] + recipe_categories[recipe_type])
|
71 |
|
72 |
if st.button("Find Recipes & Restaurants"):
|
73 |
if city:
|
74 |
+
if query != "Any":
|
75 |
# Retrieve specific recipe info from vector DB
|
76 |
query_embedding = model.encode(query).tolist()
|
77 |
results = collection.query(query_embedding, n_results=5)
|
|
|
82 |
for recipe_json in doc:
|
83 |
recipe = json.loads(recipe_json) # Convert back to dictionary
|
84 |
st.write(f"**Recipe:** {recipe['name']}")
|
85 |
+
st.image(recipe["image"], caption=recipe["name"], use_container_width=True)
|
86 |
st.write(f"Price: {recipe['price']} PKR")
|
87 |
|
88 |
+
# Fetch restaurant data
|
89 |
+
restaurants = get_restaurants(city, query)
|
90 |
if restaurants:
|
91 |
st.subheader("Available at These Restaurants:")
|
92 |
for r in restaurants:
|
|
|
107 |
for recipe_json in doc:
|
108 |
recipe = json.loads(recipe_json) # Convert back to dictionary
|
109 |
st.write(f"**Recipe:** {recipe['name']}")
|
110 |
+
st.image(recipe["image"], caption=recipe["name"], use_container_width=True)
|
111 |
st.write(f"Price: {recipe['price']} PKR")
|
112 |
+
|
113 |
+
# Fetch restaurant data for multiple recipes
|
114 |
+
for recipe_name in recipe_categories[recipe_type]:
|
115 |
+
restaurants = get_restaurants(city, recipe_name)
|
116 |
+
if restaurants:
|
117 |
+
st.subheader(f"Where to find {recipe_name}:")
|
118 |
+
for r in restaurants:
|
119 |
+
st.write(f"- {r}")
|
120 |
else:
|
121 |
st.warning("Please enter a city name.")
|