mfraz commited on
Commit
1d3b6af
·
verified ·
1 Parent(s): 92721eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -0
app.py CHANGED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import os
4
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
5
+ import groq
6
+
7
+ # Initialize Groq API
8
+ groq_client = groq.Client(api_key="your_groq_api_key")
9
+
10
+ # Load RAG components
11
+ retriever_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
12
+ retriever_model = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
13
+ generator_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
14
+ generator_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
15
+
16
+ # Function to process user input and generate financial statements
17
+ def generate_financial_statements(file, file_type):
18
+ # Read the file
19
+ if file_type == "csv":
20
+ df = pd.read_csv(file)
21
+ elif file_type == "excel":
22
+ df = pd.read_excel(file)
23
+ else:
24
+ st.error("Unsupported file type. Please upload a CSV or Excel file.")
25
+ return
26
+
27
+ # Convert the data into a context string
28
+ context = df.to_string()
29
+
30
+ # Define financial statement queries
31
+ queries = [
32
+ "Generate a journal from the following financial data:",
33
+ "Generate a general ledger from the following financial data:",
34
+ "Generate an income statement from the following financial data:",
35
+ "Generate a balance sheet from the following financial data:",
36
+ "Generate a cash flow statement from the following financial data:"
37
+ ]
38
+
39
+ # Generate financial statements using RAG
40
+ financial_statements = {}
41
+ for query in queries:
42
+ # Combine query and context
43
+ input_text = f"{query}\n{context}"
44
+
45
+ # Retrieve relevant information (optional, if using a retriever)
46
+ input_ids = retriever_tokenizer(input_text, return_tensors="pt").input_ids
47
+ retrieved_context = retriever_model(input_ids)
48
+
49
+ # Generate response using the generator model
50
+ input_ids = generator_tokenizer(input_text, return_tensors="pt").input_ids
51
+ output = generator_model.generate(input_ids)
52
+ response = generator_tokenizer.decode(output[0], skip_special_tokens=True)
53
+
54
+ # Store the result
55
+ financial_statements[query] = response
56
+
57
+ return financial_statements
58
+
59
+ # Streamlit UI
60
+ st.title("Financial Statement Generator")
61
+ st.write("Upload your financial data (CSV or Excel) to generate journal, general ledger, income statement, balance sheet, and cash flow statement.")
62
+
63
+ # File upload
64
+ uploaded_file = st.file_uploader("Upload your file", type=["csv", "xlsx"])
65
+ if uploaded_file is not None:
66
+ file_type = uploaded_file.name.split(".")[-1]
67
+ financial_statements = generate_financial_statements(uploaded_file, file_type)
68
+
69
+ # Display results
70
+ for statement_type, statement in financial_statements.items():
71
+ st.subheader(statement_type)
72
+ st.write(statement)