Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
5 |
+
import groq
|
6 |
+
|
7 |
+
# Initialize Groq API
|
8 |
+
groq_client = groq.Client(api_key="your_groq_api_key")
|
9 |
+
|
10 |
+
# Load RAG components
|
11 |
+
retriever_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
|
12 |
+
retriever_model = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
|
13 |
+
generator_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
|
14 |
+
generator_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
|
15 |
+
|
16 |
+
# Function to process user input and generate financial statements
|
17 |
+
def generate_financial_statements(file, file_type):
|
18 |
+
# Read the file
|
19 |
+
if file_type == "csv":
|
20 |
+
df = pd.read_csv(file)
|
21 |
+
elif file_type == "excel":
|
22 |
+
df = pd.read_excel(file)
|
23 |
+
else:
|
24 |
+
st.error("Unsupported file type. Please upload a CSV or Excel file.")
|
25 |
+
return
|
26 |
+
|
27 |
+
# Convert the data into a context string
|
28 |
+
context = df.to_string()
|
29 |
+
|
30 |
+
# Define financial statement queries
|
31 |
+
queries = [
|
32 |
+
"Generate a journal from the following financial data:",
|
33 |
+
"Generate a general ledger from the following financial data:",
|
34 |
+
"Generate an income statement from the following financial data:",
|
35 |
+
"Generate a balance sheet from the following financial data:",
|
36 |
+
"Generate a cash flow statement from the following financial data:"
|
37 |
+
]
|
38 |
+
|
39 |
+
# Generate financial statements using RAG
|
40 |
+
financial_statements = {}
|
41 |
+
for query in queries:
|
42 |
+
# Combine query and context
|
43 |
+
input_text = f"{query}\n{context}"
|
44 |
+
|
45 |
+
# Retrieve relevant information (optional, if using a retriever)
|
46 |
+
input_ids = retriever_tokenizer(input_text, return_tensors="pt").input_ids
|
47 |
+
retrieved_context = retriever_model(input_ids)
|
48 |
+
|
49 |
+
# Generate response using the generator model
|
50 |
+
input_ids = generator_tokenizer(input_text, return_tensors="pt").input_ids
|
51 |
+
output = generator_model.generate(input_ids)
|
52 |
+
response = generator_tokenizer.decode(output[0], skip_special_tokens=True)
|
53 |
+
|
54 |
+
# Store the result
|
55 |
+
financial_statements[query] = response
|
56 |
+
|
57 |
+
return financial_statements
|
58 |
+
|
59 |
+
# Streamlit UI
|
60 |
+
st.title("Financial Statement Generator")
|
61 |
+
st.write("Upload your financial data (CSV or Excel) to generate journal, general ledger, income statement, balance sheet, and cash flow statement.")
|
62 |
+
|
63 |
+
# File upload
|
64 |
+
uploaded_file = st.file_uploader("Upload your file", type=["csv", "xlsx"])
|
65 |
+
if uploaded_file is not None:
|
66 |
+
file_type = uploaded_file.name.split(".")[-1]
|
67 |
+
financial_statements = generate_financial_statements(uploaded_file, file_type)
|
68 |
+
|
69 |
+
# Display results
|
70 |
+
for statement_type, statement in financial_statements.items():
|
71 |
+
st.subheader(statement_type)
|
72 |
+
st.write(statement)
|