from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from datetime import datetime
import os

class HFModel:
    def __init__(self, model_name):
        parts = model_name.split("/")
        self.friendly_name = parts[1]
        self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        self.chat_history = []
        self.log_file = f"chat_log_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"

    def generate_response(self, input_text, max_length=100, skip_special_tokens=True):
        inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model.device)
        outputs = self.model.generate(**inputs, max_length=max_length)
        response = self.tokenizer.decode(outputs[0], skip_special_tokens=skip_special_tokens).strip()
        return response

    def stream_response(self, input_text, max_length=100, skip_special_tokens=True):
        inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model.device)
        for output in self.model.generate(**inputs, max_length=max_length, do_stream=True):
            response = self.tokenizer.decode(output, skip_special_tokens=skip_special_tokens).strip()
            yield response

    def chat(self, user_input, max_length=100, skip_special_tokens=True):
        # Add user input to chat history
        self.chat_history.append({"role": "user", "content": user_input})

        # Generate model response
        model_response = self.generate_response(user_input, max_length=max_length, skip_special_tokens=skip_special_tokens)

        # Add model response to chat history
        self.chat_history.append({"role": "assistant", "content": model_response})

        # Save chat log
        self.save_chat_log()

        return model_response

    def save_chat_log(self):
        with open(self.log_file, "a", encoding="utf-8") as f:
            for entry in self.chat_history[-2:]:  # Save only the latest interaction
                role = entry["role"]
                content = entry["content"]
                f.write(f"**{role.capitalize()}:**\n\n{content}\n\n---\n\n")

    def clear_chat_history(self):
        self.chat_history = []
        print("Chat history cleared.")

    def print_chat_history(self):
        for entry in self.chat_history:
            role = entry["role"]
            content = entry["content"]
            print(f"{role.capitalize()}: {content}\n")