mew77 commited on
Commit
fc0c635
·
verified ·
1 Parent(s): 2b5c906

Create hf_model.py

Browse files
Files changed (1) hide show
  1. hf_model.py +58 -0
hf_model.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+ from datetime import datetime
5
+ import os
6
+
7
+ class HFModel:
8
+ def __init__(self, model_name):
9
+ parts = model_name.split("/")
10
+ self.friendly_name = parts[1]
11
+ self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
12
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
13
+ self.chat_history = []
14
+ self.log_file = f"chat_log_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"
15
+
16
+ def generate_response(self, input_text, max_length=100, skip_special_tokens=True):
17
+ inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model.device)
18
+ outputs = self.model.generate(**inputs, max_length=max_length)
19
+ response = self.tokenizer.decode(outputs[0], skip_special_tokens=skip_special_tokens).strip()
20
+ return response
21
+
22
+ def stream_response(self, input_text, max_length=100, skip_special_tokens=True):
23
+ inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model.device)
24
+ for output in self.model.generate(**inputs, max_length=max_length, do_stream=True):
25
+ response = self.tokenizer.decode(output, skip_special_tokens=skip_special_tokens).strip()
26
+ yield response
27
+
28
+ def chat(self, user_input, max_length=100, skip_special_tokens=True):
29
+ # Add user input to chat history
30
+ self.chat_history.append({"role": "user", "content": user_input})
31
+
32
+ # Generate model response
33
+ model_response = self.generate_response(user_input, max_length=max_length, skip_special_tokens=skip_special_tokens)
34
+
35
+ # Add model response to chat history
36
+ self.chat_history.append({"role": "assistant", "content": model_response})
37
+
38
+ # Save chat log
39
+ self.save_chat_log()
40
+
41
+ return model_response
42
+
43
+ def save_chat_log(self):
44
+ with open(self.log_file, "a", encoding="utf-8") as f:
45
+ for entry in self.chat_history[-2:]: # Save only the latest interaction
46
+ role = entry["role"]
47
+ content = entry["content"]
48
+ f.write(f"**{role.capitalize()}:**\n\n{content}\n\n---\n\n")
49
+
50
+ def clear_chat_history(self):
51
+ self.chat_history = []
52
+ print("Chat history cleared.")
53
+
54
+ def print_chat_history(self):
55
+ for entry in self.chat_history:
56
+ role = entry["role"]
57
+ content = entry["content"]
58
+ print(f"{role.capitalize()}: {content}\n")