Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForImageClassification, AutoImageProcessor, pipeline | |
# Carregar o modelo e o processador de imagens | |
model = AutoModelForImageClassification.from_pretrained("mestrevh/computer-vision-beans", use_safetensors=True) | |
image_processor = AutoImageProcessor.from_pretrained("mestrevh/computer-vision-beans") | |
# Criar o pipeline | |
classifier = pipeline("image-classification", model=model, feature_extractor=image_processor) | |
# Função de classificação | |
def predict_image(image): | |
# A saída do classifier é uma lista de dicionários, pegar o label e a confiança | |
result = classifier(image) | |
label = result[0]['label'] | |
confidence = result[0]['score'] | |
return f"Class: {label}, Confidence: {confidence:.2f}" | |
# Interface Gradio | |
interface = gr.Interface(fn=predict_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
live=True) | |
interface.launch() | |