Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,38 @@
|
|
1 |
import torch
|
2 |
-
from transformers import pipeline
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
|
6 |
siglip_checkpoint = "nielsr/siglip-base-patch16-224"
|
7 |
clip_checkpoint = "openai/clip-vit-base-patch16"
|
8 |
-
siglip_detector = pipeline(model=siglip_checkpoint, task="zero-shot-image-classification")
|
9 |
clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification")
|
|
|
|
|
|
|
10 |
|
11 |
def postprocess(output):
|
12 |
return {out["label"]: float(out["score"]) for out in output}
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def infer(image, candidate_labels):
|
16 |
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
|
17 |
-
siglip_out = siglip_detector(image, candidate_labels
|
18 |
clip_out = clip_detector(image, candidate_labels=candidate_labels)
|
19 |
-
return postprocess(clip_out),
|
20 |
|
21 |
|
22 |
with gr.Blocks() as demo:
|
|
|
1 |
import torch
|
2 |
+
from transformers import pipeline, SiglipModel, AutoProcessor
|
3 |
+
import numpy as np
|
4 |
import gradio as gr
|
5 |
|
6 |
|
7 |
siglip_checkpoint = "nielsr/siglip-base-patch16-224"
|
8 |
clip_checkpoint = "openai/clip-vit-base-patch16"
|
|
|
9 |
clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification")
|
10 |
+
siglip_model = SiglipModel.from_pretrained("nielsr/siglip-base-patch16-224")
|
11 |
+
siglip_processor = AutoProcessor.from_pretrained("nielsr/siglip-base-patch16-224")
|
12 |
+
|
13 |
|
14 |
def postprocess(output):
|
15 |
return {out["label"]: float(out["score"]) for out in output}
|
16 |
|
17 |
+
def postprocess_siglip(output, labels):
|
18 |
+
return {labels[i]: float(np.array(output[0])[i]) for i in range(len(labels))}
|
19 |
+
|
20 |
+
def siglip_detector(image, texts):
|
21 |
+
inputs = siglip_processor(text=texts, images=image, return_tensors="pt",
|
22 |
+
padding="max_length")
|
23 |
+
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(**inputs)
|
26 |
+
logits_per_image = outputs.logits_per_image
|
27 |
+
probs = torch.sigmoid(logits_per_image)
|
28 |
+
return probs
|
29 |
+
|
30 |
|
31 |
def infer(image, candidate_labels):
|
32 |
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
|
33 |
+
siglip_out = siglip_detector(image, candidate_labels)
|
34 |
clip_out = clip_detector(image, candidate_labels=candidate_labels)
|
35 |
+
return postprocess(clip_out), postprocess_siglip(siglip_out, labels=candidate_labels)
|
36 |
|
37 |
|
38 |
with gr.Blocks() as demo:
|