File size: 6,474 Bytes
7125168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8dc18b
7125168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512e4cc
7125168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
import cv2
import torch
from PIL import Image
from pathlib import Path
from threading import Thread
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
import spaces
import time

# model config
model_12b_name = "google/gemma-3-12b-it"
model_4b_name = "google/gemma-3-4b-it"
model_12b = Gemma3ForConditionalGeneration.from_pretrained(
    model_12b_name,
    device_map="auto",
    torch_dtype=torch.bfloat16
).eval()
processor_12b = AutoProcessor.from_pretrained(model_12b_name)
model_4b = Gemma3ForConditionalGeneration.from_pretrained(
    model_4b_name,
    device_map="auto",
    torch_dtype=torch.bfloat16
).eval()
processor_4b = AutoProcessor.from_pretrained(model_4b_name)
# I will add timestamp later
def extract_video_frames(video_path, num_frames=8):
    cap = cv2.VideoCapture(video_path)
    frames = []
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    step = max(total_frames // num_frames, 1)
    
    for i in range(num_frames):
        cap.set(cv2.CAP_PROP_POS_FRAMES, i * step)
        ret, frame = cap.read()
        if ret:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(Image.fromarray(frame))
    cap.release()
    return frames

def format_message(content, files):
    
    message_content = []

    if content:
        parts = content.split('<image>')
        for i, part in enumerate(parts):
            if part.strip():
                message_content.append({"type": "text", "text": part.strip()})
            if i < len(parts) - 1 and files:
                img = Image.open(files.pop(0))
                message_content.append({"type": "image", "image": img})
    for file in files:
        file_path = file if isinstance(file, str) else file.name
        if Path(file_path).suffix.lower() in ['.jpg', '.jpeg', '.png']:
            img = Image.open(file_path)
            message_content.append({"type": "image", "image": img})
        elif Path(file_path).suffix.lower() in ['.mp4', '.mov']:
            frames = extract_video_frames(file_path)
            for frame in frames:
                message_content.append({"type": "image", "image": frame})
    return message_content

def format_conversation_history(chat_history):
    messages = []
    current_user_content = []
    for item in chat_history:
        role = item["role"]
        content = item["content"]
        if role == "user":
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            elif isinstance(content, list):
                current_user_content.extend(content)
            else:
                current_user_content.append({"type": "text", "text": str(content)})
        elif role == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": str(content)}]})
    if current_user_content:
        messages.append({"role": "user", "content": current_user_content})
    return messages

@spaces.GPU(duration=120)
def generate_response(input_data, chat_history, model_choice, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
    if isinstance(input_data, dict) and "text" in input_data:
        text = input_data["text"]
        files = input_data.get("files", [])
    else:
        text = str(input_data)
        files = []

    new_message_content = format_message(text, files)
    new_message = {"role": "user", "content": new_message_content}
    system_message = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}] if system_prompt else []
    processed_history = format_conversation_history(chat_history)
    messages = system_message + processed_history
    if messages and messages[-1]["role"] == "user":
        messages[-1]["content"].extend(new_message["content"])
    else:
        messages.append(new_message)
    if model_choice == "Gemma 3 12B":
        model = model_12b
        processor = processor_12b
    else:
        model = model_4b
        processor = processor_4b
    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_tensors="pt",
        return_dict=True
    ).to(model.device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=repetition_penalty
    )
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

demo = gr.ChatInterface(
    fn=generate_response,
    additional_inputs=[
        gr.Dropdown(
            label="Model",
            choices=["Gemma 3 12B", "Gemma 3 4B"],
            value="Gemma 3 12B"
        ),
        gr.Slider(label="Max new tokens", minimum=100, maximum=2000, step=1, value=512),
        gr.Textbox(
            label="System Prompt",
            value="You are a friendly chatbot. ",
            lines=4,
            placeholder="Change system prompt"
        ),
        gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
        gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
        gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0),
    ],
    examples=[
        [{"text": "Explain this image", "files": ["examples/image1.jpg"]}],
    ],
    cache_examples=False,
    type="messages",
    description="""
    # Gemma 3
    You can pick your model 12B or 4B, upload images or videos, and adjust settings below to customize your experience.
    """,
    fill_height=True,
    textbox=gr.MultimodalTextbox(
        label="Query Input",
        file_types=["image", "video"],
        file_count="multiple",
        placeholder="Type your message or upload media"
    ),
    stop_btn="Stop Generation",
    multimodal=True,
    theme=gr.themes.Soft(),
)

if __name__ == "__main__":
    demo.launch()