File size: 6,474 Bytes
7125168 e8dc18b 7125168 512e4cc 7125168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio as gr
import cv2
import torch
from PIL import Image
from pathlib import Path
from threading import Thread
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
import spaces
import time
# model config
model_12b_name = "google/gemma-3-12b-it"
model_4b_name = "google/gemma-3-4b-it"
model_12b = Gemma3ForConditionalGeneration.from_pretrained(
model_12b_name,
device_map="auto",
torch_dtype=torch.bfloat16
).eval()
processor_12b = AutoProcessor.from_pretrained(model_12b_name)
model_4b = Gemma3ForConditionalGeneration.from_pretrained(
model_4b_name,
device_map="auto",
torch_dtype=torch.bfloat16
).eval()
processor_4b = AutoProcessor.from_pretrained(model_4b_name)
# I will add timestamp later
def extract_video_frames(video_path, num_frames=8):
cap = cv2.VideoCapture(video_path)
frames = []
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
step = max(total_frames // num_frames, 1)
for i in range(num_frames):
cap.set(cv2.CAP_PROP_POS_FRAMES, i * step)
ret, frame = cap.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame))
cap.release()
return frames
def format_message(content, files):
message_content = []
if content:
parts = content.split('<image>')
for i, part in enumerate(parts):
if part.strip():
message_content.append({"type": "text", "text": part.strip()})
if i < len(parts) - 1 and files:
img = Image.open(files.pop(0))
message_content.append({"type": "image", "image": img})
for file in files:
file_path = file if isinstance(file, str) else file.name
if Path(file_path).suffix.lower() in ['.jpg', '.jpeg', '.png']:
img = Image.open(file_path)
message_content.append({"type": "image", "image": img})
elif Path(file_path).suffix.lower() in ['.mp4', '.mov']:
frames = extract_video_frames(file_path)
for frame in frames:
message_content.append({"type": "image", "image": frame})
return message_content
def format_conversation_history(chat_history):
messages = []
current_user_content = []
for item in chat_history:
role = item["role"]
content = item["content"]
if role == "user":
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
elif isinstance(content, list):
current_user_content.extend(content)
else:
current_user_content.append({"type": "text", "text": str(content)})
elif role == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": str(content)}]})
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
return messages
@spaces.GPU(duration=120)
def generate_response(input_data, chat_history, model_choice, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
if isinstance(input_data, dict) and "text" in input_data:
text = input_data["text"]
files = input_data.get("files", [])
else:
text = str(input_data)
files = []
new_message_content = format_message(text, files)
new_message = {"role": "user", "content": new_message_content}
system_message = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}] if system_prompt else []
processed_history = format_conversation_history(chat_history)
messages = system_message + processed_history
if messages and messages[-1]["role"] == "user":
messages[-1]["content"].extend(new_message["content"])
else:
messages.append(new_message)
if model_choice == "Gemma 3 12B":
model = model_12b
processor = processor_12b
else:
model = model_4b
processor = processor_4b
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
).to(model.device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
demo = gr.ChatInterface(
fn=generate_response,
additional_inputs=[
gr.Dropdown(
label="Model",
choices=["Gemma 3 12B", "Gemma 3 4B"],
value="Gemma 3 12B"
),
gr.Slider(label="Max new tokens", minimum=100, maximum=2000, step=1, value=512),
gr.Textbox(
label="System Prompt",
value="You are a friendly chatbot. ",
lines=4,
placeholder="Change system prompt"
),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0),
],
examples=[
[{"text": "Explain this image", "files": ["examples/image1.jpg"]}],
],
cache_examples=False,
type="messages",
description="""
# Gemma 3
You can pick your model 12B or 4B, upload images or videos, and adjust settings below to customize your experience.
""",
fill_height=True,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Type your message or upload media"
),
stop_btn="Stop Generation",
multimodal=True,
theme=gr.themes.Soft(),
)
if __name__ == "__main__":
demo.launch() |