Spaces:
Runtime error
Runtime error
File size: 4,740 Bytes
e6dc665 97b3ea8 e6dc665 712d61e e6dc665 712d61e 97b3ea8 e6dc665 712d61e 97b3ea8 e6dc665 712d61e a9658cc 98d17ba 712d61e e6dc665 712d61e 97b3ea8 712d61e e6dc665 712d61e 78a22d9 b1f181a bd6a602 712d61e a7848ca 712d61e e6dc665 712d61e e6dc665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import csv
import streamlit as st
import numpy as np
import cv2
from PIL import Image
import optic1
from functions import image_show
import pandas as pd
from data_func import make_new_data,update,save_and_push
import os
from huggingface_hub import Repository
def pull_read(DATASET_REPO_URL,HF_TOKEN,DATA_FILE):
repo = Repository(
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
with open(DATA_FILE) as csvfile:
df = pd.read_csv(csvfile)
df = pd.DataFrame(df)
return repo, df
@st.cache
def convert_df_to_csv(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
def screen_scan_main():
col1,col2 = st.columns(2)
with col1:
teacher_code = st.text_input("Ogretmen kodu:",key=12)
with col2:
exam_code = st.text_input("Sınav Kodu:",key=13,value=10)
exam_code = int(exam_code)
teacher_code = str(teacher_code)
DATA_FILENAME = f"{teacher_code}.csv"
DATA_FILENAME = str(DATA_FILENAME)
image_file = st.file_uploader(
"Tarama Yapmak Icin Optigi Yukleyin", type=['jpeg', 'png', 'jpg', 'webp'])
if image_file != None:
col3,col4 = st.columns(2)
with col3:
if st.button("Tara ve Sonucu Goruntule"):
repo, repo_df = pull_read(DATASET_REPO_URL = "https://huggingface.co/datasets/mertbozkurt/school_data",
DATA_FILE = os.path.join("data", DATA_FILENAME),
HF_TOKEN = "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")
repo.git_pull()
image = Image.open(image_file)
image = np.array(image.convert('RGB'))
#(ans_txt,pathImage, save_images= True)
grading, wrong_ans, student_idFix, resim_list =optic1.optic1(ans_txt1="cevapanahtari/cevapanahtari_ders1.txt",
ans_txt2="cevapanahtari/cevapanahtari_ders2.txt",
ans_txt3="cevapanahtari/cevapanahtari_ders3.txt",
pathImage=image,save_images=False)
#image_show(resim_list)
if len(wrong_ans[0]) == 0:
wrong_ans[0] = "0"
wrong_ans_str = ','.join(str(wrong_ans[0]))
st.write("Notu:",int(grading[0]))
st.write("Yanlis Yaptigi sorular:",wrong_ans_str)
st.write("Ogrenci Numarasi:",student_idFix)
with col4:
if st.button("Tara ve Sonucu Kaydet"):
repo, repo_df = pull_read(DATASET_REPO_URL = "https://huggingface.co/datasets/mertbozkurt/school_data",
DATA_FILE = os.path.join("data", DATA_FILENAME),
HF_TOKEN = "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")
repo.git_pull()
image = Image.open(image_file)
image = np.array(image.convert('RGB'))
#(ans_txt,pathImage, save_images= True)
grading, wrong_ans, student_idFix, resim_list =optic1.optic1(ans_txt1="cevapanahtari/cevapanahtari_ders1.txt",
ans_txt2="cevapanahtari/cevapanahtari_ders2.txt",
ans_txt3="cevapanahtari/cevapanahtari_ders3.txt",
pathImage=image,save_images=False)
#image_show(resim_list)
if len(wrong_ans[0]) == 0:
wrong_ans[0] = "0"
#
wrong_ans_str = ','.join(str(wrong_ans[0]))
new_data = make_new_data(sinav_kodu=exam_code, ogrenci_no=int(student_idFix),
notu=int(grading[0]),yanlislar=str(wrong_ans_str))
#st.dataframe(new_data)
updated = update(new_data=new_data,ex_df=repo_df)
#st.dataframe(updated,use_container_width=True)
save_and_push(dataFrame=updated,repo=repo,fileName=f"data/{DATA_FILENAME}")
st.download_button(label="Tum verileri indirmek icin tiklayin",data=convert_df_to_csv(updated),
file_name=f'{teacher_code}.csv',mime='text/csv',)
#python -m streamlit run app.py
if __name__ == '__main__':
screen_scan_main() |