import tempfile import time import os from utils import compute_sha1_from_file from langchain.schema import Document import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from stats import add_usage import re def clean_chat_text(text): """Clean chat export text to remove special characters and format consistently""" # Remove non-printable characters text = ''.join(char for char in text if char.isprintable()) # Clean up WhatsApp-style timestamps and phone numbers text = re.sub(r'\[\d{1,2}/\d{1,2}/\d{2,4},\s+\d{1,2}:\d{1,2}:\d{1,2}\s+[AP]M\]', '', text) text = re.sub(r'‪\+\d{2,3}\s*\d{3,10}\s*\d{3,10}‬', '', text) # Remove joining messages text = re.sub(r'joined using this group\'s invite link', '', text) # Remove extra whitespace text = ' '.join(text.split()) return text def process_file(vector_store, file, loader_class, file_suffix, stats_db=None): documents = [] file_name = file.name file_size = file.size if st.secrets.self_hosted == "false": if file_size > 1000000: st.error("File size is too large. Please upload a file smaller than 1MB or self host.") return dateshort = time.strftime("%Y%m%d") with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file: tmp_file.write(file.getvalue()) tmp_file.flush() loader = loader_class(tmp_file.name) documents = loader.load() file_sha1 = compute_sha1_from_file(tmp_file.name) os.remove(tmp_file.name) chunk_size = st.session_state['chunk_size'] chunk_overlap = st.session_state['chunk_overlap'] text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap) documents = text_splitter.split_documents(documents) # Clean the text content before creating metadata docs_with_metadata = [Document(page_content=clean_chat_text(doc.page_content), metadata={"file_sha1": file_sha1, "file_size": file_size, "file_name": file_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort, "user": st.session_state["username"]}) for doc in documents] try: # Add debug logging before vector store addition print(f"Attempting to add {len(docs_with_metadata)} documents") print(f"Sample cleaned content: {docs_with_metadata[0].page_content[:200] if docs_with_metadata else 'No documents'}") vector_store.add_documents(docs_with_metadata) if stats_db: add_usage(stats_db, "embedding", "file", metadata={"file_name": file_name, "file_type": file_suffix, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap}) except Exception as e: print(f"Error adding documents to vector store:") print(f"Exception: {str(e)}") print(f"Input details:") print(f"File name: {file_name}") print(f"File size: {file_size}") print(f"File SHA1: {file_sha1}") print(f"Number of documents: {len(docs_with_metadata)}") print(f"Chunk size: {chunk_size}") print(f"Chunk overlap: {chunk_overlap}") print(f"First document preview (truncated):") if docs_with_metadata: print(docs_with_metadata[0].page_content[:500]) # Additional debug info for vector store print(f"Vector store type: {type(vector_store).__name__}") raise