testspace / app.py
caidanfeng
add
5120594
raw
history blame
6.9 kB
#!/usr/bin/env python
# coding: utf-8
# ## ChatGPT来了,更快的速度更低的价格
# In[ ]:
# In[ ]:
import openai
openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020?"},
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
{"role": "user", "content": "Where was it played?"}
]
)
import openai
import os
OPENAI_API_KEY=os.environ.get("OPENAI_API_KEY")
openai.api_key = OPENAI_API_KEY
# 封装了一个 Conversation 类
class Conversation:
# prompt 作为system 的 content,代表我们对这个聊天机器人的指令,
# num_of_round 代表每次向ChatGPT 发起请求的时候,保留过去几轮会话。
def __init__(self, prompt, num_of_round):
self.prompt = prompt
self.num_of_round = num_of_round
self.messages = []
self.messages.append({"role": "system", "content": self.prompt})
#输入是一个 string 类型的 question,返回结果也是 string 类型的一条 message。
# 每次调用 ask 函数,都会向 ChatGPT 发起一个请求
# 在这个请求里,我们都会把最新的问题拼接到整个对话数组的最后,而在得到 ChatGPT 的回答之后也会把回答拼接上去。
def ask(self, question):
try:
self.messages.append( {"role": "user", "content": question})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=self.messages,
temperature=0.5,
max_tokens=2048,
top_p=1,
)
except Exception as e:
print(e)
return e
message = response["choices"][0]["message"]["content"]
self.messages.append({"role": "assistant", "content": message})
# 回答完之后,发现会话的轮数超过我们设置的 num_of_round,我们就去掉最前面的一轮会话
if len(self.messages) > self.num_of_round*2 + 1:
del self.messages[1:3]
return message
# In[2]:
prompt = """你是一个中国厨师,用中文回答做菜的问题。你的回答需要满足以下要求:
1. 你的回答必须是中文
2. 回答限制在100个字以内"""
conv1 = Conversation(prompt, 3)
question1 = "你是谁?"
print("User : %s" % question1)
print("Assistant : %s\n" % conv1.ask(question1))
question2 = "请问鱼香肉丝怎么做?"
print("User : %s" % question2)
print("Assistant : %s\n" % conv1.ask(question2))
question3 = "那蚝油牛肉呢?"
print("User : %s" % question3)
print("Assistant : %s\n" % conv1.ask(question3))
# In[3]:
question4 = "我问你的第一个问题是什么?"
print("User : %s" % question4)
print("Assistant : %s\n" % conv1.ask(question4))
question5 = "我问你的第一个问题是什么?"
print("User : %s" % question5)
print("Assistant : %s\n" % conv1.ask(question5))
class Conversation2:
def __init__(self, prompt, num_of_round):
self.prompt = prompt
self.num_of_round = num_of_round
self.messages = []
self.messages.append({"role": "system", "content": self.prompt})
def ask(self, question):
try:
self.messages.append( {"role": "user", "content": question})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=self.messages,
temperature=0.5,
max_tokens=2048,
top_p=1,
)
except Exception as e:
print(e)
return e
message = response["choices"][0]["message"]["content"]
num_of_tokens = response['usage']['total_tokens']
self.messages.append({"role": "assistant", "content": message})
if len(self.messages) > self.num_of_round*2 + 1:
del self.messages[1:3]
return message, num_of_tokens
# In[6]:
conv2 = Conversation2(prompt, 3)
questions = [question1, question2, question3, question4, question5]
for question in questions:
answer, num_of_tokens = conv2.ask(question)
print("询问 {%s} 消耗的token数量是 : %d" % (question, num_of_tokens))
import tiktoken
encoding = tiktoken.get_encoding("cl100k_base")
conv2 = Conversation2(prompt, 3)
question1 = "你是谁?"
answer1, num_of_tokens = conv2.ask(question1)
print("总共消耗的token数量是 : %d" % (num_of_tokens))
prompt_count = len(encoding.encode(prompt))
question1_count = len(encoding.encode(question1))
answer1_count = len(encoding.encode(answer1))
total_count = prompt_count + question1_count + answer1_count
print("Prompt消耗 %d Token, 问题消耗 %d Token,回答消耗 %d Token,总共消耗 %d Token" % (prompt_count, question1_count, answer1_count, total_count))
system_start_count = len(encoding.encode("<|im_start|>system\n"))
print(encoding.encode("<|im_start|>system\n"))
end_count = len(encoding.encode("<|im_end|>\n"))
print(encoding.encode("<|im_end|>\n"))
user_start_count = len(encoding.encode("<|im_start|>user\n"))
print(encoding.encode("<|im_start|>user\n"))
assistant_start_count = len(encoding.encode("<|im_start|>assistant\n"))
print(encoding.encode("<|im_start|>assistant\n"))
total_mark_count = system_start_count + user_start_count + assistant_start_count + end_count*2
print("系统拼接的标记消耗 %d Token" % total_mark_count)
get_ipython().run_line_magic('pip', 'install gradio')
# In[4]:
get_ipython().run_line_magic('pip', 'install --upgrade gradio')
# In[3]:
import gradio as gr
prompt = """你是一个中国厨师,用中文回答做菜的问题。你的回答需要满足以下要求:
1. 你的回答必须是中文
2. 回答限制在100个字以内"""
# 定义好了 system 这个系统角色的提示语,创建了一个 Conversation 对象。
conv = Conversation(prompt, 5)
# 通过 history 维护了整个会话的历史记录
def predict(input, history=[]):
history.append(input)
response = conv.ask(input)
history.append(response)
# 通过 responses,将用户和 AI 的对话分组
responses = [(u,b) for u,b in zip(history[::2], history[1::2])]
return responses, history
# 最后,我们通过一段 with 代码,创建了对应的聊天界面。Gradio 提供了一个现成的Chatbot 组件,我们只需要调用它,然后提供一个文本输入框就好了。
with gr.Blocks(css="#chatbot{height:350px} .overflow-y-auto{height:500px}") as demo:
chatbot = gr.Chatbot(elem_id="chatbot")
state = gr.State([])
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
txt.submit(predict, [txt, state], [chatbot, state])
demo.launch()
# In[ ]: