Spaces:
Runtime error
Runtime error
| # --------------------------------------------------------------- | |
| # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # This work is licensed under the NVIDIA Source Code License | |
| # for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file. | |
| # --------------------------------------------------------------- | |
| from glob import glob | |
| import argparse | |
| import torch | |
| import numpy as np | |
| import os | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.optim as optim | |
| import torchvision | |
| import torchvision.transforms as transforms | |
| from torchvision.datasets import CIFAR10, ImageFolder | |
| from datasets_prep.lsun import LSUN | |
| from datasets_prep.stackmnist_data import StackedMNIST, _data_transforms_stacked_mnist | |
| from datasets_prep.lmdb_datasets import LMDBDataset | |
| from torch.multiprocessing import Process | |
| import torch.distributed as dist | |
| import shutil | |
| import logging | |
| from encoder import build_encoder | |
| from utils import ResampledShards2 | |
| from torch.utils.tensorboard import SummaryWriter | |
| def log_and_continue(exn): | |
| logging.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.') | |
| return True | |
| def copy_source(file, output_dir): | |
| shutil.copyfile(file, os.path.join(output_dir, os.path.basename(file))) | |
| def broadcast_params(params): | |
| for param in params: | |
| dist.broadcast(param.data, src=0) | |
| #%% Diffusion coefficients | |
| def var_func_vp(t, beta_min, beta_max): | |
| log_mean_coeff = -0.25 * t ** 2 * (beta_max - beta_min) - 0.5 * t * beta_min | |
| var = 1. - torch.exp(2. * log_mean_coeff) | |
| return var | |
| def var_func_geometric(t, beta_min, beta_max): | |
| return beta_min * ((beta_max / beta_min) ** t) | |
| def extract(input, t, shape): | |
| out = torch.gather(input, 0, t) | |
| reshape = [shape[0]] + [1] * (len(shape) - 1) | |
| out = out.reshape(*reshape) | |
| return out | |
| def get_time_schedule(args, device): | |
| n_timestep = args.num_timesteps | |
| eps_small = 1e-3 | |
| t = np.arange(0, n_timestep + 1, dtype=np.float64) | |
| t = t / n_timestep | |
| t = torch.from_numpy(t) * (1. - eps_small) + eps_small | |
| return t.to(device) | |
| def get_sigma_schedule(args, device): | |
| n_timestep = args.num_timesteps | |
| beta_min = args.beta_min | |
| beta_max = args.beta_max | |
| eps_small = 1e-3 | |
| t = np.arange(0, n_timestep + 1, dtype=np.float64) | |
| t = t / n_timestep | |
| t = torch.from_numpy(t) * (1. - eps_small) + eps_small | |
| if args.use_geometric: | |
| var = var_func_geometric(t, beta_min, beta_max) | |
| else: | |
| var = var_func_vp(t, beta_min, beta_max) | |
| alpha_bars = 1.0 - var | |
| betas = 1 - alpha_bars[1:] / alpha_bars[:-1] | |
| first = torch.tensor(1e-8) | |
| betas = torch.cat((first[None], betas)).to(device) | |
| betas = betas.type(torch.float32) | |
| sigmas = betas**0.5 | |
| a_s = torch.sqrt(1-betas) | |
| return sigmas, a_s, betas | |
| class Diffusion_Coefficients(): | |
| def __init__(self, args, device): | |
| self.sigmas, self.a_s, _ = get_sigma_schedule(args, device=device) | |
| self.a_s_cum = np.cumprod(self.a_s.cpu()) | |
| self.sigmas_cum = np.sqrt(1 - self.a_s_cum ** 2) | |
| self.a_s_prev = self.a_s.clone() | |
| self.a_s_prev[-1] = 1 | |
| self.a_s_cum = self.a_s_cum.to(device) | |
| self.sigmas_cum = self.sigmas_cum.to(device) | |
| self.a_s_prev = self.a_s_prev.to(device) | |
| def q_sample(coeff, x_start, t, *, noise=None): | |
| """ | |
| Diffuse the data (t == 0 means diffused for t step) | |
| """ | |
| if noise is None: | |
| noise = torch.randn_like(x_start) | |
| x_t = extract(coeff.a_s_cum, t, x_start.shape) * x_start + \ | |
| extract(coeff.sigmas_cum, t, x_start.shape) * noise | |
| return x_t | |
| def q_sample_pairs(coeff, x_start, t): | |
| """ | |
| Generate a pair of disturbed images for training | |
| :param x_start: x_0 | |
| :param t: time step t | |
| :return: x_t, x_{t+1} | |
| """ | |
| noise = torch.randn_like(x_start) | |
| x_t = q_sample(coeff, x_start, t) | |
| x_t_plus_one = extract(coeff.a_s, t+1, x_start.shape) * x_t + \ | |
| extract(coeff.sigmas, t+1, x_start.shape) * noise | |
| return x_t, x_t_plus_one | |
| #%% posterior sampling | |
| class Posterior_Coefficients(): | |
| def __init__(self, args, device): | |
| _, _, self.betas = get_sigma_schedule(args, device=device) | |
| #we don't need the zeros | |
| self.betas = self.betas.type(torch.float32)[1:] | |
| self.alphas = 1 - self.betas | |
| self.alphas_cumprod = torch.cumprod(self.alphas, 0) | |
| self.alphas_cumprod_prev = torch.cat( | |
| (torch.tensor([1.], dtype=torch.float32,device=device), self.alphas_cumprod[:-1]), 0 | |
| ) | |
| self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) | |
| self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod) | |
| self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod) | |
| self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1) | |
| self.posterior_mean_coef1 = (self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)) | |
| self.posterior_mean_coef2 = ((1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod)) | |
| self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20)) | |
| def sample_posterior(coefficients, x_0,x_t, t): | |
| def q_posterior(x_0, x_t, t): | |
| mean = ( | |
| extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0 | |
| + extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t | |
| ) | |
| var = extract(coefficients.posterior_variance, t, x_t.shape) | |
| log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape) | |
| return mean, var, log_var_clipped | |
| def p_sample(x_0, x_t, t): | |
| mean, _, log_var = q_posterior(x_0, x_t, t) | |
| noise = torch.randn_like(x_t) | |
| nonzero_mask = (1 - (t == 0).type(torch.float32)) | |
| return mean + nonzero_mask[:,None,None,None] * torch.exp(0.5 * log_var) * noise | |
| sample_x_pos = p_sample(x_0, x_t, t) | |
| return sample_x_pos | |
| def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None): | |
| x = x_init | |
| with torch.no_grad(): | |
| for i in reversed(range(n_time)): | |
| t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device) | |
| t_time = t | |
| latent_z = torch.randn(x.size(0), opt.nz, device=x.device) | |
| x_0 = generator(x, t_time, latent_z, cond=cond) | |
| x_new = sample_posterior(coefficients, x_0, x, t) | |
| x = x_new.detach() | |
| return x | |
| from contextlib import suppress | |
| def filter_no_caption(sample): | |
| return 'txt' in sample | |
| def get_autocast(precision): | |
| if precision == 'amp': | |
| return torch.cuda.amp.autocast | |
| elif precision == 'amp_bfloat16': | |
| return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16) | |
| else: | |
| return suppress | |
| def train(rank, gpu, args): | |
| from score_sde.models.discriminator import Discriminator_small, Discriminator_large, CondAttnDiscriminator, SmallCondAttnDiscriminator | |
| from score_sde.models.ncsnpp_generator_adagn import NCSNpp | |
| from EMA import EMA | |
| #torch.manual_seed(args.seed + rank) | |
| #torch.cuda.manual_seed(args.seed + rank) | |
| #torch.cuda.manual_seed_all(args.seed + rank) | |
| device = "cuda" | |
| autocast = get_autocast(args.precision) | |
| batch_size = args.batch_size | |
| nz = args.nz #latent dimension | |
| if args.dataset == 'cifar10': | |
| dataset = CIFAR10('./data', train=True, transform=transforms.Compose([ | |
| transforms.Resize(32), | |
| transforms.RandomHorizontalFlip(), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))]), download=True) | |
| elif args.dataset == 'stackmnist': | |
| train_transform, valid_transform = _data_transforms_stacked_mnist() | |
| dataset = StackedMNIST(root='./data', train=True, download=False, transform=train_transform) | |
| elif args.dataset == 'lsun': | |
| train_transform = transforms.Compose([ | |
| transforms.Resize(args.image_size), | |
| transforms.CenterCrop(args.image_size), | |
| transforms.RandomHorizontalFlip(), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) | |
| ]) | |
| train_data = LSUN(root='/datasets/LSUN/', classes=['church_outdoor_train'], transform=train_transform) | |
| subset = list(range(0, 120000)) | |
| dataset = torch.utils.data.Subset(train_data, subset) | |
| elif args.dataset == 'celeba_256': | |
| train_transform = transforms.Compose([ | |
| transforms.Resize(args.image_size), | |
| transforms.RandomHorizontalFlip(), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) | |
| ]) | |
| dataset = LMDBDataset(root='/datasets/celeba-lmdb/', name='celeba', train=True, transform=train_transform) | |
| elif args.dataset == "image_folder": | |
| train_transform = transforms.Compose([ | |
| transforms.Resize(args.image_size), | |
| transforms.CenterCrop(args.image_size), | |
| # transforms.RandomHorizontalFlip(), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) | |
| ]) | |
| dataset = ImageFolder(root=args.dataset_root, transform=train_transform) | |
| elif args.dataset == 'wds': | |
| import webdataset as wds | |
| if args.preprocessing == "resize": | |
| train_transform = transforms.Compose([ | |
| transforms.Resize(args.image_size), | |
| transforms.CenterCrop(args.image_size), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) | |
| ]) | |
| elif args.preprocessing == "random_resized_crop_v1": | |
| train_transform = transforms.Compose([ | |
| transforms.RandomResizedCrop(args.image_size, scale=(0.95, 1.0), interpolation=3), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) | |
| ]) | |
| shards = glob(os.path.join(args.dataset_root, "*.tar")) if os.path.isdir(args.dataset_root) else args.dataset_root | |
| pipeline = [ResampledShards2(shards)] | |
| pipeline.extend([ | |
| wds.split_by_node, | |
| wds.split_by_worker, | |
| wds.tarfile_to_samples(handler=log_and_continue), | |
| wds.shuffle( | |
| bufsize=5000, | |
| initial=1000, | |
| ), | |
| ]) | |
| pipeline.extend([ | |
| wds.select(filter_no_caption), | |
| wds.decode("pilrgb", handler=log_and_continue), | |
| wds.rename(image="jpg;png"), | |
| wds.map_dict(image=train_transform), | |
| wds.to_tuple("image","txt"), | |
| wds.batched(batch_size, partial=False), | |
| ]) | |
| dataset = wds.DataPipeline(*pipeline) | |
| data_loader = wds.WebLoader( | |
| dataset, | |
| batch_size=None, | |
| shuffle=False, | |
| num_workers=8, | |
| ) | |
| if args.dataset != "wds": | |
| train_sampler = torch.utils.data.distributed.DistributedSampler( | |
| dataset, | |
| num_replicas=args.world_size, | |
| rank=rank | |
| ) | |
| data_loader = torch.utils.data.DataLoader( | |
| dataset, | |
| batch_size=batch_size, | |
| shuffle=False, | |
| num_workers=4, | |
| drop_last=True, | |
| pin_memory=True, | |
| sampler=train_sampler, | |
| ) | |
| text_encoder = build_encoder(name=args.text_encoder, masked_mean=args.masked_mean).to(device) | |
| args.cond_size = text_encoder.output_size | |
| netG = NCSNpp(args).to(device) | |
| nb_params = 0 | |
| for param in netG.parameters(): | |
| nb_params += param.flatten().shape[0] | |
| print("Number of generator parameters:", nb_params) | |
| if args.discr_type == "small": | |
| netD = Discriminator_small(nc = 2*args.num_channels, ngf = args.ngf, | |
| t_emb_dim = args.t_emb_dim, | |
| cond_size=text_encoder.output_size, | |
| act=nn.LeakyReLU(0.2)).to(device) | |
| elif args.discr_type == "small_cond_attn": | |
| netD = SmallCondAttnDiscriminator(nc = 2*args.num_channels, ngf = args.ngf, | |
| t_emb_dim = args.t_emb_dim, | |
| cond_size=text_encoder.output_size, | |
| act=nn.LeakyReLU(0.2)).to(device) | |
| elif args.discr_type == "large": | |
| netD = Discriminator_large(nc = 2*args.num_channels, ngf = args.ngf, | |
| t_emb_dim = args.t_emb_dim, | |
| cond_size=text_encoder.output_size, | |
| act=nn.LeakyReLU(0.2)).to(device) | |
| elif args.discr_type == "large_attn_pool": | |
| netD = Discriminator_large(nc = 2*args.num_channels, ngf = args.ngf, | |
| t_emb_dim = args.t_emb_dim, | |
| cond_size=text_encoder.output_size, | |
| attn_pool=True, | |
| act=nn.LeakyReLU(0.2)).to(device) | |
| elif args.discr_type == "large_cond_attn": | |
| netD = CondAttnDiscriminator( | |
| nc = 2*args.num_channels, | |
| ngf = args.ngf, | |
| t_emb_dim = args.t_emb_dim, | |
| cond_size=text_encoder.output_size, | |
| act=nn.LeakyReLU(0.2)).to(device) | |
| broadcast_params(netG.parameters()) | |
| broadcast_params(netD.parameters()) | |
| if args.fsdp: | |
| from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper | |
| from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP | |
| netG = FSDP( | |
| netG, | |
| flatten_parameters=True, | |
| verbose=True, | |
| ) | |
| optimizerD = optim.Adam(netD.parameters(), lr=args.lr_d, betas = (args.beta1, args.beta2)) | |
| optimizerG = optim.Adam(netG.parameters(), lr=args.lr_g, betas = (args.beta1, args.beta2)) | |
| if args.use_ema: | |
| optimizerG = EMA(optimizerG, ema_decay=args.ema_decay) | |
| schedulerG = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerG, args.num_epoch, eta_min=1e-5) | |
| schedulerD = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerD, args.num_epoch, eta_min=1e-5) | |
| if args.fsdp: | |
| netD = nn.parallel.DistributedDataParallel(netD, device_ids=[gpu]) | |
| else: | |
| netG = nn.parallel.DistributedDataParallel(netG, device_ids=[gpu]) | |
| netD = nn.parallel.DistributedDataParallel(netD, device_ids=[gpu]) | |
| if args.grad_checkpointing: | |
| from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper | |
| netG = checkpoint_wrapper(netG) | |
| exp = args.exp | |
| parent_dir = "./saved_info/dd_gan/{}".format(args.dataset) | |
| exp_path = os.path.join(parent_dir,exp) | |
| if rank == 0: | |
| if not os.path.exists(exp_path): | |
| os.makedirs(exp_path) | |
| copy_source(__file__, exp_path) | |
| shutil.copytree('score_sde/models', os.path.join(exp_path, 'score_sde/models')) | |
| coeff = Diffusion_Coefficients(args, device) | |
| pos_coeff = Posterior_Coefficients(args, device) | |
| T = get_time_schedule(args, device) | |
| checkpoint_file = os.path.join(exp_path, 'content.pth') | |
| if rank == 0: | |
| log_writer = SummaryWriter(exp_path) | |
| if args.resume and os.path.exists(checkpoint_file): | |
| checkpoint = torch.load(checkpoint_file, map_location="cpu") | |
| init_epoch = checkpoint['epoch'] | |
| epoch = init_epoch | |
| netG.load_state_dict(checkpoint['netG_dict']) | |
| # load G | |
| optimizerG.load_state_dict(checkpoint['optimizerG']) | |
| schedulerG.load_state_dict(checkpoint['schedulerG']) | |
| # load D | |
| netD.load_state_dict(checkpoint['netD_dict']) | |
| optimizerD.load_state_dict(checkpoint['optimizerD']) | |
| schedulerD.load_state_dict(checkpoint['schedulerD']) | |
| global_step = checkpoint['global_step'] | |
| print("=> loaded checkpoint (epoch {})" | |
| .format(checkpoint['epoch'])) | |
| else: | |
| global_step, epoch, init_epoch = 0, 0, 0 | |
| use_cond_attn_discr = args.discr_type in ("large_cond_attn", "small_cond_attn", "large_attn_pool") | |
| for epoch in range(init_epoch, args.num_epoch+1): | |
| if args.dataset == "wds": | |
| os.environ["WDS_EPOCH"] = str(epoch) | |
| else: | |
| train_sampler.set_epoch(epoch) | |
| for iteration, (x, y) in enumerate(data_loader): | |
| #print(x.shape) | |
| if args.dataset != "wds": | |
| y = [str(yi) for yi in y.tolist()] | |
| if args.classifier_free_guidance_proba: | |
| u = (np.random.uniform(size=len(y)) <= args.classifier_free_guidance_proba).tolist() | |
| y = ["" if ui else yi for yi,ui in zip(y, u)] | |
| with torch.no_grad(): | |
| cond_pooled, cond, cond_mask = text_encoder(y, return_only_pooled=False) | |
| for p in netD.parameters(): | |
| p.requires_grad = True | |
| netD.zero_grad() | |
| #sample from p(x_0) | |
| real_data = x.to(device, non_blocking=True) | |
| #sample t | |
| t = torch.randint(0, args.num_timesteps, (real_data.size(0),), device=device) | |
| x_t, x_tp1 = q_sample_pairs(coeff, real_data, t) | |
| x_t.requires_grad = True | |
| cond_for_discr = (cond_pooled, cond, cond_mask) if use_cond_attn_discr else cond_pooled | |
| if args.grad_penalty_cond: | |
| if use_cond_attn_discr: | |
| #cond_pooled.requires_grad = True | |
| cond.requires_grad = True | |
| #cond_mask.requires_grad = True | |
| else: | |
| cond_for_discr.requires_grad = True | |
| # train with real | |
| with autocast(): | |
| D_real = netD(x_t, t, x_tp1.detach(), cond=cond_for_discr).view(-1) | |
| errD_real = F.softplus(-D_real) | |
| errD_real = errD_real.mean() | |
| errD_real.backward(retain_graph=True) | |
| grad_penalty = None | |
| if args.lazy_reg is None: | |
| if args.grad_penalty_cond: | |
| inputs = (x_t,) + (cond,) if use_cond_attn_discr else (cond_for_discr,) | |
| grad_real = torch.autograd.grad( | |
| outputs=D_real.sum(), inputs=inputs, create_graph=True | |
| )[0] | |
| grad_real = torch.cat([g.view(g.size(0), -1) for g in grad_real]) | |
| grad_penalty = (grad_real.norm(2, dim=1) ** 2).mean() | |
| grad_penalty = args.r1_gamma / 2 * grad_penalty | |
| grad_penalty.backward() | |
| else: | |
| grad_real = torch.autograd.grad( | |
| outputs=D_real.sum(), inputs=x_t, create_graph=True | |
| )[0] | |
| grad_penalty = ( | |
| grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2 | |
| ).mean() | |
| grad_penalty = args.r1_gamma / 2 * grad_penalty | |
| grad_penalty.backward() | |
| else: | |
| if global_step % args.lazy_reg == 0: | |
| if args.grad_penalty_cond: | |
| inputs = (x_t,) + (cond,) if use_cond_attn_discr else (cond_for_discr,) | |
| grad_real = torch.autograd.grad( | |
| outputs=D_real.sum(), inputs=inputs, create_graph=True | |
| )[0] | |
| grad_real = torch.cat([g.view(g.size(0), -1) for g in grad_real]) | |
| grad_penalty = (grad_real.norm(2, dim=1) ** 2).mean() | |
| grad_penalty = args.r1_gamma / 2 * grad_penalty | |
| grad_penalty.backward() | |
| else: | |
| grad_real = torch.autograd.grad( | |
| outputs=D_real.sum(), inputs=x_t, create_graph=True | |
| )[0] | |
| grad_penalty = ( | |
| grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2 | |
| ).mean() | |
| grad_penalty = args.r1_gamma / 2 * grad_penalty | |
| grad_penalty.backward() | |
| # train with fake | |
| latent_z = torch.randn(batch_size, nz, device=device) | |
| with autocast(): | |
| if args.grad_checkpointing: | |
| ginp = x_tp1.detach() | |
| ginp.requires_grad = True | |
| latent_z.requires_grad = True | |
| cond_pooled.requires_grad = True | |
| cond.requires_grad = True | |
| #cond_mask.requires_grad = True | |
| x_0_predict = netG(ginp, t, latent_z, cond=(cond_pooled, cond, cond_mask)) | |
| else: | |
| x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask)) | |
| x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t) | |
| output = netD(x_pos_sample, t, x_tp1.detach(), cond=cond_for_discr).view(-1) | |
| errD_fake = F.softplus(output) | |
| errD_fake = errD_fake.mean() | |
| if args.mismatch_loss: | |
| # following https://github.com/tobran/DF-GAN/blob/bc38a4f795c294b09b4ef5579cd4ff78807e5b96/code/lib/modules.py, | |
| # we add a discr loss for (real image, non matching text) | |
| #inds = torch.flip(torch.arange(len(x_t)), dims=(0,)) | |
| with autocast(): | |
| inds = torch.cat([torch.arange(1,len(x_t)),torch.arange(1)]) | |
| cond_for_discr_mis = (cond_pooled[inds], cond[inds], cond_mask[inds]) if use_cond_attn_discr else cond_pooled[inds] | |
| D_real_mis = netD(x_t, t, x_tp1.detach(), cond=cond_for_discr_mis).view(-1) | |
| errD_real_mis = F.softplus(D_real_mis) | |
| errD_real_mis = errD_real_mis.mean() | |
| errD_fake = errD_fake * 0.5 + errD_real_mis * 0.5 | |
| errD_fake.backward() | |
| errD = errD_real + errD_fake | |
| # Update D | |
| optimizerD.step() | |
| #update G | |
| for p in netD.parameters(): | |
| p.requires_grad = False | |
| netG.zero_grad() | |
| t = torch.randint(0, args.num_timesteps, (real_data.size(0),), device=device) | |
| x_t, x_tp1 = q_sample_pairs(coeff, real_data, t) | |
| latent_z = torch.randn(batch_size, nz,device=device) | |
| with autocast(): | |
| if args.grad_checkpointing: | |
| ginp = x_tp1.detach() | |
| ginp.requires_grad = True | |
| latent_z.requires_grad = True | |
| cond_pooled.requires_grad = True | |
| cond.requires_grad = True | |
| #cond_mask.requires_grad = True | |
| x_0_predict = netG(ginp, t, latent_z, cond=(cond_pooled, cond, cond_mask)) | |
| else: | |
| x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask)) | |
| x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t) | |
| output = netD(x_pos_sample, t, x_tp1.detach(), cond=cond_for_discr).view(-1) | |
| errG = F.softplus(-output) | |
| errG = errG.mean() | |
| errG.backward() | |
| optimizerG.step() | |
| if (iteration % 10 == 0) and (rank == 0): | |
| log_writer.add_scalar('g_loss', errG.item(), global_step) | |
| log_writer.add_scalar('d_loss', errD.item(), global_step) | |
| if grad_penalty is not None: | |
| log_writer.add_scalar('grad_penalty', grad_penalty.item(), global_step) | |
| global_step += 1 | |
| if iteration % 100 == 0: | |
| if rank == 0: | |
| print('epoch {} iteration{}, G Loss: {}, D Loss: {}'.format(epoch,iteration, errG.item(), errD.item())) | |
| print('Global step:', global_step) | |
| if iteration % 1000 == 0: | |
| x_t_1 = torch.randn_like(real_data) | |
| with autocast(): | |
| fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args, cond=(cond_pooled, cond, cond_mask)) | |
| if rank == 0: | |
| torchvision.utils.save_image(fake_sample, os.path.join(exp_path, 'sample_discrete_epoch_{}_iteration_{}.png'.format(epoch, iteration)), normalize=True) | |
| if args.save_content: | |
| dist.barrier() | |
| print('Saving content.') | |
| def to_cpu(d): | |
| for k, v in d.items(): | |
| d[k] = v.cpu() | |
| return d | |
| if args.fsdp: | |
| netG_state_dict = to_cpu(netG.state_dict()) | |
| netD_state_dict = to_cpu(netD.state_dict()) | |
| #netG_optim_state_dict = (netG.gather_full_optim_state_dict(optimizerG)) | |
| netG_optim_state_dict = optimizerG.state_dict() | |
| #print(netG_optim_state_dict) | |
| netD_optim_state_dict = (optimizerD.state_dict()) | |
| content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args, | |
| 'netG_dict': netG_state_dict, 'optimizerG': netG_optim_state_dict, | |
| 'schedulerG': schedulerG.state_dict(), 'netD_dict': netD_state_dict, | |
| 'optimizerD': netD_optim_state_dict, 'schedulerD': schedulerD.state_dict()} | |
| if rank == 0: | |
| torch.save(content, os.path.join(exp_path, 'content.pth')) | |
| torch.save(content, os.path.join(exp_path, 'content_backup.pth')) | |
| if args.use_ema: | |
| optimizerG.swap_parameters_with_ema(store_params_in_ema=True) | |
| if args.use_ema and rank == 0: | |
| torch.save(netG.state_dict(), os.path.join(exp_path, 'netG_{}.pth'.format(epoch))) | |
| if args.use_ema: | |
| optimizerG.swap_parameters_with_ema(store_params_in_ema=True) | |
| #if args.use_ema: | |
| # dist.barrier() | |
| print("Saved content") | |
| else: | |
| if rank == 0: | |
| content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args, | |
| 'netG_dict': netG.state_dict(), 'optimizerG': optimizerG.state_dict(), | |
| 'schedulerG': schedulerG.state_dict(), 'netD_dict': netD.state_dict(), | |
| 'optimizerD': optimizerD.state_dict(), 'schedulerD': schedulerD.state_dict()} | |
| torch.save(content, os.path.join(exp_path, 'content.pth')) | |
| torch.save(content, os.path.join(exp_path, 'content_backup.pth')) | |
| if args.use_ema: | |
| optimizerG.swap_parameters_with_ema(store_params_in_ema=True) | |
| torch.save(netG.state_dict(), os.path.join(exp_path, 'netG_{}.pth'.format(epoch))) | |
| if args.use_ema: | |
| optimizerG.swap_parameters_with_ema(store_params_in_ema=True) | |
| if not args.no_lr_decay: | |
| schedulerG.step() | |
| schedulerD.step() | |
| """ | |
| if rank == 0: | |
| if epoch % 10 == 0: | |
| torchvision.utils.save_image(x_pos_sample, os.path.join(exp_path, 'xpos_epoch_{}.png'.format(epoch)), normalize=True) | |
| x_t_1 = torch.randn_like(real_data) | |
| with autocast(): | |
| fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args, cond=(cond_pooled, cond, cond_mask)) | |
| torchvision.utils.save_image(fake_sample, os.path.join(exp_path, 'sample_discrete_epoch_{}.png'.format(epoch)), normalize=True) | |
| if args.save_content: | |
| if epoch % args.save_content_every == 0: | |
| print('Saving content.') | |
| content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args, | |
| 'netG_dict': netG.state_dict(), 'optimizerG': optimizerG.state_dict(), | |
| 'schedulerG': schedulerG.state_dict(), 'netD_dict': netD.state_dict(), | |
| 'optimizerD': optimizerD.state_dict(), 'schedulerD': schedulerD.state_dict()} | |
| torch.save(content, os.path.join(exp_path, 'content.pth')) | |
| torch.save(content, os.path.join(exp_path, 'content_backup.pth')) | |
| if epoch % args.save_ckpt_every == 0: | |
| if args.use_ema: | |
| optimizerG.swap_parameters_with_ema(store_params_in_ema=True) | |
| torch.save(netG.state_dict(), os.path.join(exp_path, 'netG_{}.pth'.format(epoch))) | |
| if args.use_ema: | |
| optimizerG.swap_parameters_with_ema(store_params_in_ema=True) | |
| dist.barrier() | |
| """ | |
| def init_processes(rank, size, fn, args): | |
| """ Initialize the distributed environment. """ | |
| import os | |
| args.rank = int(os.environ['SLURM_PROCID']) | |
| args.world_size = int(os.getenv("SLURM_NTASKS")) | |
| args.local_rank = int(os.environ['SLURM_LOCALID']) | |
| print(args.rank, args.world_size) | |
| args.master_address = os.getenv("SLURM_LAUNCH_NODE_IPADDR") | |
| os.environ['MASTER_ADDR'] = args.master_address | |
| os.environ['MASTER_PORT'] = "12345" | |
| torch.cuda.set_device(args.local_rank) | |
| gpu = args.local_rank | |
| dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=args.world_size) | |
| fn(rank, gpu, args) | |
| dist.barrier() | |
| cleanup() | |
| def cleanup(): | |
| dist.destroy_process_group() | |
| #%% | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser('ddgan parameters') | |
| parser.add_argument('--seed', type=int, default=1024, | |
| help='seed used for initialization') | |
| parser.add_argument('--resume', action='store_true',default=False) | |
| parser.add_argument('--masked_mean', action='store_true',default=False) | |
| parser.add_argument('--mismatch_loss', action='store_true',default=False) | |
| parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base") | |
| parser.add_argument('--cross_attention', action='store_true',default=False) | |
| parser.add_argument('--fsdp', action='store_true',default=False) | |
| parser.add_argument('--grad_checkpointing', action='store_true',default=False) | |
| parser.add_argument('--image_size', type=int, default=32, | |
| help='size of image') | |
| parser.add_argument('--num_channels', type=int, default=3, | |
| help='channel of image') | |
| parser.add_argument('--centered', action='store_false', default=True, | |
| help='-1,1 scale') | |
| parser.add_argument('--use_geometric', action='store_true',default=False) | |
| parser.add_argument('--beta_min', type=float, default= 0.1, | |
| help='beta_min for diffusion') | |
| parser.add_argument('--beta_max', type=float, default=20., | |
| help='beta_max for diffusion') | |
| parser.add_argument('--classifier_free_guidance_proba', type=float, default=0.0) | |
| parser.add_argument('--num_channels_dae', type=int, default=128, | |
| help='number of initial channels in denosing model') | |
| parser.add_argument('--n_mlp', type=int, default=3, | |
| help='number of mlp layers for z') | |
| parser.add_argument('--ch_mult', nargs='+', type=int, | |
| help='channel multiplier') | |
| parser.add_argument('--num_res_blocks', type=int, default=2, | |
| help='number of resnet blocks per scale') | |
| parser.add_argument('--attn_resolutions', default=(16,), nargs='+', type=int, | |
| help='resolution of applying attention') | |
| parser.add_argument('--dropout', type=float, default=0., | |
| help='drop-out rate') | |
| parser.add_argument('--resamp_with_conv', action='store_false', default=True, | |
| help='always up/down sampling with conv') | |
| parser.add_argument('--conditional', action='store_false', default=True, | |
| help='noise conditional') | |
| parser.add_argument('--fir', action='store_false', default=True, | |
| help='FIR') | |
| parser.add_argument('--fir_kernel', default=[1, 3, 3, 1], | |
| help='FIR kernel') | |
| parser.add_argument('--skip_rescale', action='store_false', default=True, | |
| help='skip rescale') | |
| parser.add_argument('--resblock_type', default='biggan', | |
| help='tyle of resnet block, choice in biggan and ddpm') | |
| parser.add_argument('--progressive', type=str, default='none', choices=['none', 'output_skip', 'residual'], | |
| help='progressive type for output') | |
| parser.add_argument('--progressive_input', type=str, default='residual', choices=['none', 'input_skip', 'residual'], | |
| help='progressive type for input') | |
| parser.add_argument('--progressive_combine', type=str, default='sum', choices=['sum', 'cat'], | |
| help='progressive combine method.') | |
| parser.add_argument('--embedding_type', type=str, default='positional', choices=['positional', 'fourier'], | |
| help='type of time embedding') | |
| parser.add_argument('--fourier_scale', type=float, default=16., | |
| help='scale of fourier transform') | |
| parser.add_argument('--not_use_tanh', action='store_true',default=False) | |
| #geenrator and training | |
| parser.add_argument('--exp', default='experiment_cifar_default', help='name of experiment') | |
| parser.add_argument('--dataset', default='cifar10', help='name of dataset') | |
| parser.add_argument('--dataset_root', default='', help='name of dataset') | |
| parser.add_argument('--nz', type=int, default=100) | |
| parser.add_argument('--num_timesteps', type=int, default=4) | |
| parser.add_argument('--z_emb_dim', type=int, default=256) | |
| parser.add_argument('--t_emb_dim', type=int, default=256) | |
| parser.add_argument('--batch_size', type=int, default=128, help='input batch size') | |
| parser.add_argument('--num_epoch', type=int, default=1200) | |
| parser.add_argument('--ngf', type=int, default=64) | |
| parser.add_argument('--lr_g', type=float, default=1.5e-4, help='learning rate g') | |
| parser.add_argument('--lr_d', type=float, default=1e-4, help='learning rate d') | |
| parser.add_argument('--beta1', type=float, default=0.5, | |
| help='beta1 for adam') | |
| parser.add_argument('--beta2', type=float, default=0.9, | |
| help='beta2 for adam') | |
| parser.add_argument('--no_lr_decay',action='store_true', default=False) | |
| parser.add_argument('--grad_penalty_cond', action='store_true',default=False) | |
| parser.add_argument('--use_ema', action='store_true', default=False, | |
| help='use EMA or not') | |
| parser.add_argument('--ema_decay', type=float, default=0.9999, help='decay rate for EMA') | |
| parser.add_argument('--r1_gamma', type=float, default=0.05, help='coef for r1 reg') | |
| parser.add_argument('--lazy_reg', type=int, default=None, | |
| help='lazy regulariation.') | |
| parser.add_argument('--save_content', action='store_true',default=False) | |
| parser.add_argument('--save_content_every', type=int, default=50, help='save content for resuming every x epochs') | |
| parser.add_argument('--save_ckpt_every', type=int, default=25, help='save ckpt every x epochs') | |
| parser.add_argument('--discr_type', type=str, default="large") | |
| parser.add_argument('--preprocessing', type=str, default="resize") | |
| parser.add_argument('--precision', type=str, default="fp32") | |
| ###ddp | |
| parser.add_argument('--num_proc_node', type=int, default=1, | |
| help='The number of nodes in multi node env.') | |
| parser.add_argument('--num_process_per_node', type=int, default=1, | |
| help='number of gpus') | |
| parser.add_argument('--node_rank', type=int, default=0, | |
| help='The index of node.') | |
| parser.add_argument('--local_rank', type=int, default=0, | |
| help='rank of process in the node') | |
| parser.add_argument('--master_address', type=str, default='127.0.0.1', | |
| help='address for master') | |
| args = parser.parse_args() | |
| # args.world_size = args.num_proc_node * args.num_process_per_node | |
| args.world_size = int(os.getenv("SLURM_NTASKS")) | |
| args.rank = int(os.environ['SLURM_PROCID']) | |
| # size = args.num_process_per_node | |
| init_processes(args.rank, args.world_size, train, args) | |