Spaces:
Runtime error
Runtime error
File size: 4,650 Bytes
0fb1163 0bb375d 0fb1163 88226d6 fbe1110 88226d6 0fb1163 fbe1110 0fb1163 8d6ca88 0fb1163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import torch
import gradio as gr
from transformers import AutoProcessor, AutoModel
from utils import (
convert_frames_to_gif,
download_youtube_video,
get_num_total_frames,
sample_frames_from_video_file,
)
FRAME_SAMPLING_RATE = 4
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"
VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS = [
"microsoft/xclip-base-patch32",
"microsoft/xclip-base-patch16-zero-shot",
"microsoft/xclip-base-patch16-kinetics-600",
"microsoft/xclip-large-patch14ft/xclip-base-patch32-16-frames",
"microsoft/xclip-large-patch14",
"microsoft/xclip-base-patch16-hmdb-4-shot",
"microsoft/xclip-base-patch16-16-frames",
"microsoft/xclip-base-patch16-hmdb-2-shot",
"microsoft/xclip-base-patch16-ucf-2-shot",
"microsoft/xclip-base-patch16-ucf-8-shot",
"microsoft/xclip-base-patch16",
"microsoft/xclip-base-patch16-hmdb-8-shot",
"microsoft/xclip-base-patch16-hmdb-16-shot",
"microsoft/xclip-base-patch16-ucf-16-shot",
]
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
model = AutoModel.from_pretrained(DEFAULT_MODEL)
def select_model(model_name):
global processor, model
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
def predict(youtube_url_or_file_path, labels_text):
if youtube_url_or_file_path.startswith("http"):
video_path = download_youtube_video(youtube_url_or_file_path)
else:
video_path = youtube_url_or_file_path
# rearrange sampling rate based on video length and model input length
num_total_frames = get_num_total_frames(video_path)
num_model_input_frames = model.config.vision_config.num_frames
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
frame_sampling_rate = num_total_frames // num_model_input_frames
else:
frame_sampling_rate = FRAME_SAMPLING_RATE
labels = labels_text.split(",")
frames = sample_frames_from_video_file(
video_path, num_model_input_frames, frame_sampling_rate
)
gif_path = convert_frames_to_gif(frames, save_path="video.gif")
inputs = processor(
text=labels, videos=list(frames), return_tensors="pt", padding=True
)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy()
label_to_prob = {}
for ind, label in enumerate(labels):
label_to_prob[label] = float(probs[ind])
return label_to_prob, gif_path
app = gr.Blocks()
with app:
gr.Markdown(
"# **<p align='center'> PROTOG - VIOLENCE DETECTION MODULE</p>**"
)
with gr.Row():
with gr.Column():
model_names_dropdown = gr.Dropdown(
choices=VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS,
label="Model:",
show_label=True,
value=DEFAULT_MODEL,
)
model_names_dropdown.change(fn=select_model, inputs=model_names_dropdown)
with gr.Tab(label="Youtube URL"):
gr.Markdown(
"### **Enter Youtube URL**"
)
youtube_url = gr.Textbox(label="Youtube URL:", show_label=True)
youtube_url_labels_text = gr.Textbox(
label="Labels Text:", show_label=True
)
youtube_url_predict_btn = gr.Button(value="Predict")
with gr.Tab(label="Local File"):
gr.Markdown(
"### **Video Upload**"
)
video_file = gr.Video(label="Video File:", show_label=True)
local_video_labels_text = gr.Textbox(
label="Labels Text:", show_label=True
)
local_video_predict_btn = gr.Button(value="Predict")
with gr.Column():
video_gif = gr.Image(
label="Input Clip",
show_label=True,
)
with gr.Column():
predictions = gr.Label(label="Predictions:", show_label=True)
# gr.Markdown("**Examples:**")
# gr.Examples(
# examples,
# [youtube_url, youtube_url_labels_text],
# [predictions, video_gif],
# fn=predict,
# cache_examples=True,
# )
youtube_url_predict_btn.click(
predict,
inputs=[youtube_url, youtube_url_labels_text],
outputs=[predictions, video_gif],
)
local_video_predict_btn.click(
predict,
inputs=[video_file, local_video_labels_text],
outputs=[predictions, video_gif],
)
app.launch() |