meghnabjayakar commited on
Commit
25614cb
·
verified ·
1 Parent(s): e1b3728

updated app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -5
app.py CHANGED
@@ -6,17 +6,14 @@ from transformers import BertTokenizer, BertForSequenceClassification
6
  import os
7
 
8
  tokenizer = BertTokenizer.from_pretrained("dmis-lab/biobert-base-cased-v1.1")
9
- model = BertForSequenceClassification.from_pretrained("dmis-lab/biobert-base-cased-v1.1", num_labels=2, return_dict=True)
10
 
11
- # freezing the layers
12
- for param in model.parameters():
13
- param.requires_grad = False
14
-
15
  # loading the pretrained weights into the model
16
  state_dict = torch.load('Bio_BERT_model.pth', map_location=torch.device('cpu'), weights_only=True)
17
  model.load_state_dict(state_dict)
18
  print("Weights initialized!")
19
 
 
20
  device = "cpu"
21
 
22
  def predict_drug_target_interaction(sentence):
 
6
  import os
7
 
8
  tokenizer = BertTokenizer.from_pretrained("dmis-lab/biobert-base-cased-v1.1")
9
+ model = BertForSequenceClassification.from_pretrained("dmis-lab/biobert-base-cased-v1.1", num_labels=2)
10
 
 
 
 
 
11
  # loading the pretrained weights into the model
12
  state_dict = torch.load('Bio_BERT_model.pth', map_location=torch.device('cpu'), weights_only=True)
13
  model.load_state_dict(state_dict)
14
  print("Weights initialized!")
15
 
16
+ model.eval()
17
  device = "cpu"
18
 
19
  def predict_drug_target_interaction(sentence):