Spaces:
Sleeping
Sleeping
MeetInCode
commited on
Commit
·
ff17e47
1
Parent(s):
815a1eb
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TFAutoModelForSeq2SeqLM
|
5 |
+
|
6 |
+
# --- Model Loading ---
|
7 |
+
# Summarization model (BART)
|
8 |
+
def load_summarizer():
|
9 |
+
model_name = "VidhuMathur/bart-log-summarization"
|
10 |
+
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
summarizer = pipeline(
|
13 |
+
"summarization",
|
14 |
+
model=model,
|
15 |
+
tokenizer=tokenizer,
|
16 |
+
device=0 if torch.cuda.is_available() else -1,
|
17 |
+
)
|
18 |
+
return summarizer
|
19 |
+
|
20 |
+
# Causal LM for analysis (Qwen)
|
21 |
+
def load_qwen():
|
22 |
+
model_name = "Qwen/Qwen3-0.6B"
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
model_name,
|
26 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
27 |
+
)
|
28 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
+
model = model.to(device)
|
30 |
+
if tokenizer.pad_token is None:
|
31 |
+
tokenizer.pad_token = tokenizer.eos_token
|
32 |
+
return model, tokenizer
|
33 |
+
|
34 |
+
# --- Core Pipeline Functions ---
|
35 |
+
def extract_json_simple(text):
|
36 |
+
start = text.find('{')
|
37 |
+
if start == -1:
|
38 |
+
return None
|
39 |
+
brace_count = 0
|
40 |
+
end = start
|
41 |
+
for i, char in enumerate(text[start:], start):
|
42 |
+
if char == '{':
|
43 |
+
brace_count += 1
|
44 |
+
elif char == '}':
|
45 |
+
brace_count -= 1
|
46 |
+
if brace_count == 0:
|
47 |
+
end = i + 1
|
48 |
+
break
|
49 |
+
if brace_count == 0:
|
50 |
+
return text[start:end]
|
51 |
+
return None
|
52 |
+
|
53 |
+
def ensure_required_keys(analysis, summary):
|
54 |
+
required_keys = {
|
55 |
+
"root_cause": f"Issue identified from log analysis: {summary[:100]}...",
|
56 |
+
"debugging_steps": [
|
57 |
+
"Check system logs for error patterns",
|
58 |
+
"Verify service status and configuration",
|
59 |
+
"Test connectivity and permissions"
|
60 |
+
],
|
61 |
+
"debug_commands": [
|
62 |
+
"systemctl status service-name",
|
63 |
+
"journalctl -u service-name -n 50",
|
64 |
+
"netstat -tlnp | grep port"
|
65 |
+
],
|
66 |
+
"useful_links": [
|
67 |
+
"https://docs.system-docs.com/troubleshooting",
|
68 |
+
"https://stackoverflow.com/questions/tagged/debugging"
|
69 |
+
]
|
70 |
+
}
|
71 |
+
for key, default_value in required_keys.items():
|
72 |
+
if key not in analysis or not analysis[key]:
|
73 |
+
analysis[key] = default_value
|
74 |
+
elif isinstance(analysis[key], list) and len(analysis[key]) == 0:
|
75 |
+
analysis[key] = default_value
|
76 |
+
return analysis
|
77 |
+
|
78 |
+
def create_fallback_analysis(summary):
|
79 |
+
summary_lower = summary.lower()
|
80 |
+
if any(word in summary_lower for word in ['database', 'connection', 'sql']):
|
81 |
+
return {
|
82 |
+
"root_cause": "Database connection issue detected in the logs",
|
83 |
+
"debugging_steps": [
|
84 |
+
"Check if database service is running",
|
85 |
+
"Verify database connection parameters",
|
86 |
+
"Test network connectivity to database server",
|
87 |
+
"Check database user permissions"
|
88 |
+
],
|
89 |
+
"debug_commands": [
|
90 |
+
"sudo systemctl status postgresql",
|
91 |
+
"netstat -an | grep 5432",
|
92 |
+
"psql -U username -h host -d database",
|
93 |
+
"ping database-host"
|
94 |
+
],
|
95 |
+
"useful_links": [
|
96 |
+
"https://www.postgresql.org/docs/current/runtime.html",
|
97 |
+
"https://dev.mysql.com/doc/refman/8.0/en/troubleshooting.html"
|
98 |
+
]
|
99 |
+
}
|
100 |
+
elif any(word in summary_lower for word in ['memory', 'heap', 'oom']):
|
101 |
+
return {
|
102 |
+
"root_cause": "Memory exhaustion or memory leak detected",
|
103 |
+
"debugging_steps": [
|
104 |
+
"Monitor current memory usage",
|
105 |
+
"Check for memory leaks in application",
|
106 |
+
"Review JVM heap settings if Java application",
|
107 |
+
"Analyze memory dump if available"
|
108 |
+
],
|
109 |
+
"debug_commands": [
|
110 |
+
"free -h",
|
111 |
+
"top -o %MEM",
|
112 |
+
"jstat -gc PID",
|
113 |
+
"ps aux --sort=-%mem | head"
|
114 |
+
],
|
115 |
+
"useful_links": [
|
116 |
+
"https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/memleaks.html",
|
117 |
+
"https://linux.die.net/man/1/free"
|
118 |
+
]
|
119 |
+
}
|
120 |
+
elif any(word in summary_lower for word in ['disk', 'space', 'full']):
|
121 |
+
return {
|
122 |
+
"root_cause": "Disk space exhaustion causing system issues",
|
123 |
+
"debugging_steps": [
|
124 |
+
"Check disk usage across all filesystems",
|
125 |
+
"Identify largest files and directories",
|
126 |
+
"Clean up temporary files and logs",
|
127 |
+
"Check for deleted files held by processes"
|
128 |
+
],
|
129 |
+
"debug_commands": [
|
130 |
+
"df -h",
|
131 |
+
"du -sh /* | sort -hr",
|
132 |
+
"find /var/log -type f -size +100M",
|
133 |
+
"lsof +L1"
|
134 |
+
],
|
135 |
+
"useful_links": [
|
136 |
+
"https://linux.die.net/man/1/df",
|
137 |
+
"https://www.cyberciti.biz/faq/linux-check-disk-space-command/"
|
138 |
+
]
|
139 |
+
}
|
140 |
+
else:
|
141 |
+
return {
|
142 |
+
"root_cause": f"System issue detected: {summary[:100]}...",
|
143 |
+
"debugging_steps": [
|
144 |
+
"Review complete error logs",
|
145 |
+
"Check system resource usage",
|
146 |
+
"Verify service configurations",
|
147 |
+
"Test system connectivity"
|
148 |
+
],
|
149 |
+
"debug_commands": [
|
150 |
+
"systemctl --failed",
|
151 |
+
"journalctl -p err -n 50",
|
152 |
+
"htop",
|
153 |
+
"netstat -tlnp"
|
154 |
+
],
|
155 |
+
"useful_links": [
|
156 |
+
"https://linux.die.net/man/1/systemctl",
|
157 |
+
"https://www.freedesktop.org/software/systemd/man/journalctl.html"
|
158 |
+
]
|
159 |
+
}
|
160 |
+
|
161 |
+
def log_processing_pipeline(raw_log, summarizer, model, tokenizer):
|
162 |
+
results = {
|
163 |
+
'raw_log': raw_log,
|
164 |
+
'summary': None,
|
165 |
+
'analysis': None,
|
166 |
+
'success': False,
|
167 |
+
'errors': []
|
168 |
+
}
|
169 |
+
# Step 1: Summarization
|
170 |
+
try:
|
171 |
+
summary_result = summarizer(raw_log, max_length=350, min_length=40, do_sample=False)
|
172 |
+
summary_text = summary_result[0]['summary_text']
|
173 |
+
results['summary'] = summary_text
|
174 |
+
except Exception as e:
|
175 |
+
results['errors'].append(f"Summarization failed: {e}")
|
176 |
+
return results
|
177 |
+
# Step 2: Analysis
|
178 |
+
success = False
|
179 |
+
attempts = 0
|
180 |
+
max_attempts = 2
|
181 |
+
while not success and attempts < max_attempts:
|
182 |
+
attempts += 1
|
183 |
+
prompt = f"""Analyze this log summary and respond with ONLY a JSON object:\n\nLog: {summary_text}\n\nRequired JSON format:\n{{\n \"root_cause\": \"explain the main problem\",\n \"debugging_steps\": [\"step 1\", \"step 2\", \"step 3\"],\n \"debug_commands\": [\"command1\", \"command2\", \"command3\"],\n \"useful_links\": [\"link1\", \"link2\"]\n}}\n\nJSON:"""
|
184 |
+
try:
|
185 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=800, truncation=True)
|
186 |
+
device = next(model.parameters()).device
|
187 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
188 |
+
with torch.no_grad():
|
189 |
+
outputs = model.generate(
|
190 |
+
**inputs,
|
191 |
+
max_new_tokens=300,
|
192 |
+
temperature=0.2,
|
193 |
+
do_sample=True,
|
194 |
+
pad_token_id=tokenizer.eos_token_id,
|
195 |
+
eos_token_id=tokenizer.eos_token_id,
|
196 |
+
repetition_penalty=1.1
|
197 |
+
)
|
198 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
199 |
+
json_str = extract_json_simple(response)
|
200 |
+
if json_str:
|
201 |
+
try:
|
202 |
+
parsed = json.loads(json_str)
|
203 |
+
fixed_analysis = ensure_required_keys(parsed, summary_text)
|
204 |
+
results['analysis'] = fixed_analysis
|
205 |
+
results['success'] = True
|
206 |
+
success = True
|
207 |
+
except json.JSONDecodeError:
|
208 |
+
if attempts == max_attempts:
|
209 |
+
results['errors'].append(f"JSON parsing failed after {attempts} attempts")
|
210 |
+
else:
|
211 |
+
if attempts == max_attempts:
|
212 |
+
results['errors'].append("No valid JSON found in response")
|
213 |
+
except Exception as e:
|
214 |
+
if attempts == max_attempts:
|
215 |
+
results['errors'].append(f"Generation failed: {e}")
|
216 |
+
if not results['success']:
|
217 |
+
results['analysis'] = create_fallback_analysis(summary_text)
|
218 |
+
results['success'] = True
|
219 |
+
results['errors'].append("Used fallback analysis due to model issues")
|
220 |
+
return results
|
221 |
+
|
222 |
+
# --- Gradio Interface ---
|
223 |
+
def process_log_file(file_obj, summarizer, model, tokenizer):
|
224 |
+
if file_obj is None:
|
225 |
+
return ("No file uploaded", "", "", "", "")
|
226 |
+
try:
|
227 |
+
encodings = ['utf-8', 'latin-1', 'cp1252', 'iso-8859-1']
|
228 |
+
log_content = None
|
229 |
+
for encoding in encodings:
|
230 |
+
try:
|
231 |
+
with open(file_obj.name, 'r', encoding=encoding) as f:
|
232 |
+
log_content = f.read()
|
233 |
+
break
|
234 |
+
except UnicodeDecodeError:
|
235 |
+
continue
|
236 |
+
if log_content is None:
|
237 |
+
return ("Encoding error", "", "", "", "")
|
238 |
+
if not log_content.strip():
|
239 |
+
return ("Empty file", "", "", "", "")
|
240 |
+
if len(log_content) > 100000:
|
241 |
+
log_content = log_content[:100000] + "\n... (file truncated)"
|
242 |
+
results = log_processing_pipeline(log_content, summarizer, model, tokenizer)
|
243 |
+
if results['success']:
|
244 |
+
analysis = results['analysis']
|
245 |
+
return (
|
246 |
+
"Analysis complete",
|
247 |
+
results['summary'],
|
248 |
+
analysis.get('root_cause', ''),
|
249 |
+
'\n'.join(analysis.get('debugging_steps', [])),
|
250 |
+
'\n'.join(analysis.get('debug_commands', [])),
|
251 |
+
'\n'.join(analysis.get('useful_links', [])),
|
252 |
+
json.dumps(results, indent=2)
|
253 |
+
)
|
254 |
+
else:
|
255 |
+
return ("Analysis failed", "", "", "", "")
|
256 |
+
except Exception as e:
|
257 |
+
return (f"Processing error: {str(e)}", "", "", "", "")
|
258 |
+
|
259 |
+
def main():
|
260 |
+
summarizer = load_summarizer()
|
261 |
+
model, tokenizer = load_qwen()
|
262 |
+
with gr.Blocks(title="Minimal LogLens") as app:
|
263 |
+
gr.Markdown("# Minimal LogLens Log Analyzer")
|
264 |
+
file_input = gr.File(label="Upload Log File", file_types=[".txt", ".log", ".out", ".err"], type="filepath")
|
265 |
+
analyze_btn = gr.Button("Analyze Log")
|
266 |
+
status = gr.Textbox(label="Status", interactive=False)
|
267 |
+
summary = gr.Textbox(label="Summary", lines=3, interactive=False)
|
268 |
+
root_cause = gr.Textbox(label="Root Cause", lines=2, interactive=False)
|
269 |
+
debug_steps = gr.Textbox(label="Debugging Steps", lines=4, interactive=False)
|
270 |
+
debug_commands = gr.Textbox(label="Debug Commands", lines=4, interactive=False)
|
271 |
+
useful_links = gr.Textbox(label="Useful Links", lines=2, interactive=False)
|
272 |
+
json_output = gr.Code(label="Full JSON Output", language="json", interactive=False)
|
273 |
+
analyze_btn.click(
|
274 |
+
fn=lambda f: process_log_file(f, summarizer, model, tokenizer),
|
275 |
+
inputs=file_input,
|
276 |
+
outputs=[status, summary, root_cause, debug_steps, debug_commands, useful_links, json_output]
|
277 |
+
)
|
278 |
+
app.launch()
|
279 |
+
|
280 |
+
if __name__ == "__main__":
|
281 |
+
main()
|