Spaces:
Runtime error
Runtime error
Update worker_runpod.py
Browse files- worker_runpod.py +8 -2
worker_runpod.py
CHANGED
@@ -110,6 +110,8 @@ else:
|
|
110 |
def generate(input):
|
111 |
values = input["input"]
|
112 |
prompt = values["prompt"]
|
|
|
|
|
113 |
negative_prompt = values.get("negative_prompt", "blurry, blurred, blurry face")
|
114 |
guidance_scale = values.get("guidance_scale", 6.0)
|
115 |
seed = values.get("seed", 42)
|
@@ -123,10 +125,12 @@ def generate(input):
|
|
123 |
partial_video_length = values.get("partial_video_length", None)
|
124 |
overlap_video_length = values.get("overlap_video_length", 4)
|
125 |
validation_image_start = values.get("validation_image_start", "asset/1.png")
|
|
|
126 |
downloaded_image_path = download_image(validation_image_start)
|
127 |
validation_image_end = values.get("validation_image_end", None)
|
128 |
|
129 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
130 |
if lora_path is not None:
|
131 |
pipeline = merge_lora(pipeline, lora_path, lora_weight)
|
132 |
|
@@ -136,6 +140,8 @@ def generate(input):
|
|
136 |
closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
|
137 |
height, width = [int(x / 16) * 16 for x in closest_size]
|
138 |
sample_size = [height, width]
|
|
|
|
|
139 |
video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
|
140 |
input_video, input_video_mask, clip_image = get_image_to_video_latent(downloaded_image_path, validation_image_end, video_length=video_length, sample_size=sample_size)
|
141 |
|
@@ -150,7 +156,7 @@ def generate(input):
|
|
150 |
video_path = os.path.join(save_path, f"{prefix}.mp4")
|
151 |
save_videos_grid(sample, video_path, fps=fps)
|
152 |
|
153 |
-
|
154 |
hf_api = HfApi()
|
155 |
repo_id = "meepmoo/h4h4jejdf" # Set your HF repo
|
156 |
hf_api.upload_file(
|
@@ -161,7 +167,7 @@ def generate(input):
|
|
161 |
repo_type="model"
|
162 |
)
|
163 |
|
164 |
-
|
165 |
result_url = f"https://huggingface.co/{repo_id}/blob/main/{prefix}.mp4"
|
166 |
result_url = ""
|
167 |
job_id = values.get("job_id", "default-job-id") # For RunPod job tracking
|
|
|
110 |
def generate(input):
|
111 |
values = input["input"]
|
112 |
prompt = values["prompt"]
|
113 |
+
print("starting Generate function")
|
114 |
+
print(prompt)
|
115 |
negative_prompt = values.get("negative_prompt", "blurry, blurred, blurry face")
|
116 |
guidance_scale = values.get("guidance_scale", 6.0)
|
117 |
seed = values.get("seed", 42)
|
|
|
125 |
partial_video_length = values.get("partial_video_length", None)
|
126 |
overlap_video_length = values.get("overlap_video_length", 4)
|
127 |
validation_image_start = values.get("validation_image_start", "asset/1.png")
|
128 |
+
print(validation_image_start)
|
129 |
downloaded_image_path = download_image(validation_image_start)
|
130 |
validation_image_end = values.get("validation_image_end", None)
|
131 |
|
132 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
133 |
+
print("Generator started")
|
134 |
if lora_path is not None:
|
135 |
pipeline = merge_lora(pipeline, lora_path, lora_weight)
|
136 |
|
|
|
140 |
closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
|
141 |
height, width = [int(x / 16) * 16 for x in closest_size]
|
142 |
sample_size = [height, width]
|
143 |
+
print("Getting closest ratio")
|
144 |
+
print(closest_ratio)
|
145 |
video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
|
146 |
input_video, input_video_mask, clip_image = get_image_to_video_latent(downloaded_image_path, validation_image_end, video_length=video_length, sample_size=sample_size)
|
147 |
|
|
|
156 |
video_path = os.path.join(save_path, f"{prefix}.mp4")
|
157 |
save_videos_grid(sample, video_path, fps=fps)
|
158 |
|
159 |
+
print("Video saved to grid, uploading to huggingface")
|
160 |
hf_api = HfApi()
|
161 |
repo_id = "meepmoo/h4h4jejdf" # Set your HF repo
|
162 |
hf_api.upload_file(
|
|
|
167 |
repo_type="model"
|
168 |
)
|
169 |
|
170 |
+
print("Video uploaded to huggingface returing output")
|
171 |
result_url = f"https://huggingface.co/{repo_id}/blob/main/{prefix}.mp4"
|
172 |
result_url = ""
|
173 |
job_id = values.get("job_id", "default-job-id") # For RunPod job tracking
|