Spaces:
Runtime error
Runtime error
Update worker_runpod.py
Browse files- worker_runpod.py +36 -23
worker_runpod.py
CHANGED
@@ -73,34 +73,48 @@ def download_image(url, download_dir="/content"):
|
|
73 |
# downloaded_image_path = download_image(validation_image_start)
|
74 |
with torch.inference_mode():
|
75 |
model_id = "/runpod-volume/model"
|
76 |
-
transformer = CogVideoXTransformer3DModel.from_pretrained_2d(
|
|
|
|
|
77 |
|
78 |
-
vae = AutoencoderKLCogVideoX.from_pretrained(
|
|
|
|
|
79 |
|
80 |
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder")
|
|
|
81 |
sampler_dict = {
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
}
|
|
|
89 |
scheduler = sampler_dict["DPM++"].from_pretrained(model_id, subfolder="scheduler")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
# Pipeline setup
|
92 |
-
if transformer.config.in_channels != vae.config.latent_channels:
|
93 |
-
pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained(
|
94 |
-
model_id, vae=vae, text_encoder=text_encoder,
|
95 |
-
transformer=transformer, scheduler=scheduler,
|
96 |
-
torch_dtype=torch.bfloat16
|
97 |
-
)
|
98 |
-
else:
|
99 |
-
pipeline = CogVideoX_Fun_Pipeline.from_pretrained(
|
100 |
-
model_id, vae=vae, text_encoder=text_encoder,
|
101 |
-
transformer=transformer, scheduler=scheduler,
|
102 |
-
torch_dtype=torch.bfloat16
|
103 |
-
)
|
104 |
|
105 |
# if low_gpu_memory_mode:
|
106 |
# pipeline.enable_sequential_cpu_offload()
|
@@ -120,8 +134,7 @@ def generate(input):
|
|
120 |
seed = values.get("seed", 42)
|
121 |
num_inference_steps = values.get("num_inference_steps", 18)
|
122 |
base_resolution = values.get("base_resolution", 512)
|
123 |
-
|
124 |
-
pipeline = merge_lora(pipeline, lora_path, lora_weight)
|
125 |
video_length = values.get("video_length", 53)
|
126 |
fps = values.get("fps", 10)
|
127 |
|
|
|
73 |
# downloaded_image_path = download_image(validation_image_start)
|
74 |
with torch.inference_mode():
|
75 |
model_id = "/runpod-volume/model"
|
76 |
+
transformer = CogVideoXTransformer3DModel.from_pretrained_2d(
|
77 |
+
model_id, subfolder="transformer"
|
78 |
+
).to(torch.bfloat16)
|
79 |
|
80 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(
|
81 |
+
model_id, subfolder="vae"
|
82 |
+
).to(torch.bfloat16)
|
83 |
|
84 |
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder")
|
85 |
+
|
86 |
sampler_dict = {
|
87 |
+
"Euler": EulerDiscreteScheduler,
|
88 |
+
"Euler A": EulerAncestralDiscreteScheduler,
|
89 |
+
"DPM++": DPMSolverMultistepScheduler,
|
90 |
+
"PNDM": PNDMScheduler,
|
91 |
+
"DDIM_Cog": CogVideoXDDIMScheduler,
|
92 |
+
"DDIM_Origin": DDIMScheduler,
|
93 |
}
|
94 |
+
|
95 |
scheduler = sampler_dict["DPM++"].from_pretrained(model_id, subfolder="scheduler")
|
96 |
+
lora_weight = values.get("lora_weight", 1.00)
|
97 |
+
pipeline = merge_lora(pipeline, lora_path, lora_weight)
|
98 |
+
|
99 |
+
if transformer.config.in_channels != vae.config.latent_channels:
|
100 |
+
pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained(
|
101 |
+
model_id,
|
102 |
+
vae=vae,
|
103 |
+
text_encoder=text_encoder,
|
104 |
+
transformer=transformer,
|
105 |
+
scheduler=scheduler,
|
106 |
+
torch_dtype=torch.bfloat16
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
pipeline = CogVideoX_Fun_Pipeline.from_pretrained(
|
110 |
+
model_id,
|
111 |
+
vae=vae,
|
112 |
+
text_encoder=text_encoder,
|
113 |
+
transformer=transformer,
|
114 |
+
scheduler=scheduler,
|
115 |
+
torch_dtype=torch.bfloat16
|
116 |
+
)
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
# if low_gpu_memory_mode:
|
120 |
# pipeline.enable_sequential_cpu_offload()
|
|
|
134 |
seed = values.get("seed", 42)
|
135 |
num_inference_steps = values.get("num_inference_steps", 18)
|
136 |
base_resolution = values.get("base_resolution", 512)
|
137 |
+
|
|
|
138 |
video_length = values.get("video_length", 53)
|
139 |
fps = values.get("fps", 10)
|
140 |
|