File size: 6,128 Bytes
8fd2f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Adapted from https://github.com/MCG-NJU/EMA-VFI/blob/main/model/flow_estimation
import torch
import torch.nn as nn
import torch.nn.functional as F

from .warplayer import warp
from .refine import *

def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=True),
        nn.PReLU(out_planes)
    )


class Head(nn.Module):
    def __init__(self, in_planes, scale, c, in_else=17):
        super(Head, self).__init__()
        self.upsample = nn.Sequential(nn.PixelShuffle(2), nn.PixelShuffle(2))
        self.scale = scale
        self.conv = nn.Sequential(
                                  conv(in_planes*2 // (4*4) + in_else, c),
                                  conv(c, c),
                                  conv(c, 5),
                                  )  

    def forward(self, motion_feature, x, flow): # /16 /8 /4
        motion_feature = self.upsample(motion_feature) #/4 /2 /1
        if self.scale != 4:
            x = F.interpolate(x, scale_factor = 4. / self.scale, mode="bilinear", align_corners=False)
        if flow != None:
            if self.scale != 4:
                flow = F.interpolate(flow, scale_factor = 4. / self.scale, mode="bilinear", align_corners=False) * 4. / self.scale
            x = torch.cat((x, flow), 1)
        x = self.conv(torch.cat([motion_feature, x], 1))
        if self.scale != 4:
            x = F.interpolate(x, scale_factor = self.scale // 4, mode="bilinear", align_corners=False)
            flow = x[:, :4] * (self.scale // 4)
        else:
            flow = x[:, :4]
        mask = x[:, 4:5]
        return flow, mask

    
class MultiScaleFlow(nn.Module):
    def __init__(self, backbone, **kargs):
        super(MultiScaleFlow, self).__init__()
        self.flow_num_stage = len(kargs['hidden_dims'])
        self.feature_bone = backbone
        self.block = nn.ModuleList([Head( kargs['motion_dims'][-1-i] * kargs['depths'][-1-i] + kargs['embed_dims'][-1-i], 
                            kargs['scales'][-1-i], 
                            kargs['hidden_dims'][-1-i],
                            6 if i==0 else 17) 
                            for i in range(self.flow_num_stage)])
        self.unet = Unet(kargs['c'] * 2)

    def warp_features(self, xs, flow):
        y0 = []
        y1 = []
        B = xs[0].size(0) // 2
        for x in xs:
            y0.append(warp(x[:B], flow[:, 0:2]))
            y1.append(warp(x[B:], flow[:, 2:4]))
            flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
        return y0, y1

    def calculate_flow(self, imgs, timestep, af=None, mf=None):
        img0, img1 = imgs[:, :3], imgs[:, 3:6]
        B = img0.size(0)
        flow, mask = None, None
        # appearence_features & motion_features
        if (af is None) or (mf is None):
            af, mf = self.feature_bone(img0, img1)
        for i in range(self.flow_num_stage):
            t = torch.full(mf[-1-i][:B].shape, timestep, dtype=torch.float).cuda()
            if flow != None:
                warped_img0 = warp(img0, flow[:, :2])
                warped_img1 = warp(img1, flow[:, 2:4])
                flow_, mask_ = self.block[i](
                    torch.cat([t*mf[-1-i][:B],(1-t)*mf[-1-i][B:],af[-1-i][:B],af[-1-i][B:]],1),
                    torch.cat((img0, img1, warped_img0, warped_img1, mask), 1),
                    flow
                    )
                flow = flow + flow_
                mask = mask + mask_
            else:
                flow, mask = self.block[i](
                    torch.cat([t*mf[-1-i][:B],(1-t)*mf[-1-i][B:],af[-1-i][:B],af[-1-i][B:]],1),
                    torch.cat((img0, img1), 1),
                    None
                    )

        return flow, mask

    def coraseWarp_and_Refine(self, imgs, af, flow, mask):
        img0, img1 = imgs[:, :3], imgs[:, 3:6]
        warped_img0 = warp(img0, flow[:, :2])
        warped_img1 = warp(img1, flow[:, 2:4])
        c0, c1 = self.warp_features(af, flow)
        tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
        res = tmp[:, :3] * 2 - 1
        mask_ = torch.sigmoid(mask)
        merged = warped_img0 * mask_ + warped_img1 * (1 - mask_)
        pred = torch.clamp(merged + res, 0, 1)
        return pred


    # Actually consist of 'calculate_flow' and 'coraseWarp_and_Refine'
    def forward(self, x, timestep=0.5):
        img0, img1 = x[:, :3], x[:, 3:6]
        B = x.size(0)
        flow_list = []
        merged = []
        mask_list = []
        warped_img0 = img0
        warped_img1 = img1
        flow = None
        # appearence_features & motion_features
        af, mf = self.feature_bone(img0, img1)
        for i in range(self.flow_num_stage):
            t = torch.full(mf[-1-i][:B].shape, timestep, dtype=torch.float).cuda()
            if flow != None:
                flow_d, mask_d = self.block[i]( torch.cat([t*mf[-1-i][:B], (1-timestep)*mf[-1-i][B:],af[-1-i][:B],af[-1-i][B:]],1), 
                                                torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow)
                flow = flow + flow_d
                mask = mask + mask_d
            else:
                flow, mask = self.block[i]( torch.cat([t*mf[-1-i][:B], (1-t)*mf[-1-i][B:],af[-1-i][:B],af[-1-i][B:]],1), 
                                            torch.cat((img0, img1), 1), None)
            mask_list.append(torch.sigmoid(mask))
            flow_list.append(flow)
            warped_img0 = warp(img0, flow[:, :2])
            warped_img1 = warp(img1, flow[:, 2:4])
            merged.append(warped_img0 * mask_list[i] + warped_img1 * (1 - mask_list[i]))
        
        c0, c1 = self.warp_features(af, flow)
        tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
        res = tmp[:, :3] * 2 - 1
        pred = torch.clamp(merged[-1] + res, 0, 1)
        return flow_list, mask_list, merged, pred