|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from math import exp | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def gaussian(window_size, sigma): | 
					
						
						|  | gauss = torch.Tensor([exp(-((x - window_size // 2) ** 2) / float(2 * sigma**2)) for x in range(window_size)]) | 
					
						
						|  | return gauss / gauss.sum() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_window(window_size, channel=1): | 
					
						
						|  | _1D_window = gaussian(window_size, 1.5).unsqueeze(1) | 
					
						
						|  | _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0).to(device) | 
					
						
						|  | window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() | 
					
						
						|  | return window | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_window_3d(window_size, channel=1): | 
					
						
						|  | _1D_window = gaussian(window_size, 1.5).unsqueeze(1) | 
					
						
						|  | _2D_window = _1D_window.mm(_1D_window.t()) | 
					
						
						|  | _3D_window = _2D_window.unsqueeze(2) @ (_1D_window.t()) | 
					
						
						|  | window = _3D_window.expand(1, channel, window_size, window_size, window_size).contiguous().to(device) | 
					
						
						|  | return window | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None): | 
					
						
						|  |  | 
					
						
						|  | if val_range is None: | 
					
						
						|  | if torch.max(img1) > 128: | 
					
						
						|  | max_val = 255 | 
					
						
						|  | else: | 
					
						
						|  | max_val = 1 | 
					
						
						|  |  | 
					
						
						|  | if torch.min(img1) < -0.5: | 
					
						
						|  | min_val = -1 | 
					
						
						|  | else: | 
					
						
						|  | min_val = 0 | 
					
						
						|  | L = max_val - min_val | 
					
						
						|  | else: | 
					
						
						|  | L = val_range | 
					
						
						|  |  | 
					
						
						|  | padd = 0 | 
					
						
						|  | (_, channel, height, width) = img1.size() | 
					
						
						|  | if window is None: | 
					
						
						|  | real_size = min(window_size, height, width) | 
					
						
						|  | window = create_window(real_size, channel=channel).to(img1.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mu1 = F.conv2d(F.pad(img1, (5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=channel) | 
					
						
						|  | mu2 = F.conv2d(F.pad(img2, (5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=channel) | 
					
						
						|  |  | 
					
						
						|  | mu1_sq = mu1.pow(2) | 
					
						
						|  | mu2_sq = mu2.pow(2) | 
					
						
						|  | mu1_mu2 = mu1 * mu2 | 
					
						
						|  |  | 
					
						
						|  | sigma1_sq = F.conv2d(F.pad(img1 * img1, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu1_sq | 
					
						
						|  | sigma2_sq = F.conv2d(F.pad(img2 * img2, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu2_sq | 
					
						
						|  | sigma12 = F.conv2d(F.pad(img1 * img2, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu1_mu2 | 
					
						
						|  |  | 
					
						
						|  | C1 = (0.01 * L) ** 2 | 
					
						
						|  | C2 = (0.03 * L) ** 2 | 
					
						
						|  |  | 
					
						
						|  | v1 = 2.0 * sigma12 + C2 | 
					
						
						|  | v2 = sigma1_sq + sigma2_sq + C2 | 
					
						
						|  | cs = torch.mean(v1 / v2) | 
					
						
						|  |  | 
					
						
						|  | ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) | 
					
						
						|  |  | 
					
						
						|  | if size_average: | 
					
						
						|  | ret = ssim_map.mean() | 
					
						
						|  | else: | 
					
						
						|  | ret = ssim_map.mean(1).mean(1).mean(1) | 
					
						
						|  |  | 
					
						
						|  | if full: | 
					
						
						|  | return ret, cs | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def ssim_matlab(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None): | 
					
						
						|  |  | 
					
						
						|  | if val_range is None: | 
					
						
						|  | if torch.max(img1) > 128: | 
					
						
						|  | max_val = 255 | 
					
						
						|  | else: | 
					
						
						|  | max_val = 1 | 
					
						
						|  |  | 
					
						
						|  | if torch.min(img1) < -0.5: | 
					
						
						|  | min_val = -1 | 
					
						
						|  | else: | 
					
						
						|  | min_val = 0 | 
					
						
						|  | L = max_val - min_val | 
					
						
						|  | else: | 
					
						
						|  | L = val_range | 
					
						
						|  |  | 
					
						
						|  | padd = 0 | 
					
						
						|  | (_, _, height, width) = img1.size() | 
					
						
						|  | if window is None: | 
					
						
						|  | real_size = min(window_size, height, width) | 
					
						
						|  | window = create_window_3d(real_size, channel=1).to(img1.device, dtype=img1.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img1 = img1.unsqueeze(1) | 
					
						
						|  | img2 = img2.unsqueeze(1) | 
					
						
						|  |  | 
					
						
						|  | mu1 = F.conv3d(F.pad(img1, (5, 5, 5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=1) | 
					
						
						|  | mu2 = F.conv3d(F.pad(img2, (5, 5, 5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=1) | 
					
						
						|  |  | 
					
						
						|  | mu1_sq = mu1.pow(2) | 
					
						
						|  | mu2_sq = mu2.pow(2) | 
					
						
						|  | mu1_mu2 = mu1 * mu2 | 
					
						
						|  |  | 
					
						
						|  | sigma1_sq = F.conv3d(F.pad(img1 * img1, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu1_sq | 
					
						
						|  | sigma2_sq = F.conv3d(F.pad(img2 * img2, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu2_sq | 
					
						
						|  | sigma12 = F.conv3d(F.pad(img1 * img2, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu1_mu2 | 
					
						
						|  |  | 
					
						
						|  | C1 = (0.01 * L) ** 2 | 
					
						
						|  | C2 = (0.03 * L) ** 2 | 
					
						
						|  |  | 
					
						
						|  | v1 = 2.0 * sigma12 + C2 | 
					
						
						|  | v2 = sigma1_sq + sigma2_sq + C2 | 
					
						
						|  | cs = torch.mean(v1 / v2) | 
					
						
						|  |  | 
					
						
						|  | ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) | 
					
						
						|  |  | 
					
						
						|  | if size_average: | 
					
						
						|  | ret = ssim_map.mean() | 
					
						
						|  | else: | 
					
						
						|  | ret = ssim_map.mean(1).mean(1).mean(1) | 
					
						
						|  |  | 
					
						
						|  | if full: | 
					
						
						|  | return ret, cs | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False): | 
					
						
						|  | device = img1.device | 
					
						
						|  | weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device) | 
					
						
						|  | levels = weights.size()[0] | 
					
						
						|  | mssim = [] | 
					
						
						|  | mcs = [] | 
					
						
						|  | for _ in range(levels): | 
					
						
						|  | sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range) | 
					
						
						|  | mssim.append(sim) | 
					
						
						|  | mcs.append(cs) | 
					
						
						|  |  | 
					
						
						|  | img1 = F.avg_pool2d(img1, (2, 2)) | 
					
						
						|  | img2 = F.avg_pool2d(img2, (2, 2)) | 
					
						
						|  |  | 
					
						
						|  | mssim = torch.stack(mssim) | 
					
						
						|  | mcs = torch.stack(mcs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if normalize: | 
					
						
						|  | mssim = (mssim + 1) / 2 | 
					
						
						|  | mcs = (mcs + 1) / 2 | 
					
						
						|  |  | 
					
						
						|  | pow1 = mcs**weights | 
					
						
						|  | pow2 = mssim**weights | 
					
						
						|  |  | 
					
						
						|  | output = torch.prod(pow1[:-1] * pow2[-1]) | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SSIM(torch.nn.Module): | 
					
						
						|  | def __init__(self, window_size=11, size_average=True, val_range=None): | 
					
						
						|  | super(SSIM, self).__init__() | 
					
						
						|  | self.window_size = window_size | 
					
						
						|  | self.size_average = size_average | 
					
						
						|  | self.val_range = val_range | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.channel = 3 | 
					
						
						|  | self.window = create_window(window_size, channel=self.channel) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, img1, img2): | 
					
						
						|  | (_, channel, _, _) = img1.size() | 
					
						
						|  |  | 
					
						
						|  | if channel == self.channel and self.window.dtype == img1.dtype: | 
					
						
						|  | window = self.window | 
					
						
						|  | else: | 
					
						
						|  | window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype) | 
					
						
						|  | self.window = window | 
					
						
						|  | self.channel = channel | 
					
						
						|  |  | 
					
						
						|  | _ssim = ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average) | 
					
						
						|  | dssim = (1 - _ssim) / 2 | 
					
						
						|  | return dssim | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MSSSIM(torch.nn.Module): | 
					
						
						|  | def __init__(self, window_size=11, size_average=True, channel=3): | 
					
						
						|  | super(MSSSIM, self).__init__() | 
					
						
						|  | self.window_size = window_size | 
					
						
						|  | self.size_average = size_average | 
					
						
						|  | self.channel = channel | 
					
						
						|  |  | 
					
						
						|  | def forward(self, img1, img2): | 
					
						
						|  | return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average) | 
					
						
						|  |  |