spoof-detect / python /augment.py
Niv Sardi
augmentation, first pass
8f69832
raw
history blame
3.31 kB
import os
import time
import math
import random
from io import BytesIO
import numpy as np
from cairosvg import svg2png
import cv2
import filetype
from filetype.match import image_matchers
import imgaug as ia
from imgaug import augmenters as iaa
from imgaug.augmentables.batches import UnnormalizedBatch
from common import defaults, mkdir
import imtool
import pipelines
BATCH_SIZE = 16
mkdir.make_dirs([defaults.AUGMENTED_IMAGES_PATH, defaults.AUGMENTED_LABELS_PATH])
logo_images = []
background_images = [d for d in os.scandir(defaults.IMAGES_PATH)]
stats = {
'failed': 0,
'ok': 0
}
for d in os.scandir(defaults.LOGOS_DATA_PATH):
img = None
if not d.is_file():
stats['failed'] += 1
continue
try:
if filetype.match(d.path, matchers=image_matchers):
img = cv2.imread(d.path, cv2.IMREAD_UNCHANGED)
else:
png = svg2png(url=d.path)
img = cv2.imdecode(np.asarray(bytearray(png), dtype=np.uint8), cv2.IMREAD_UNCHANGED)
stats['ok'] += 1
(h, w, c) = img.shape
if c == 3:
img = imtool.add_alpha(img)
if img.ndim < 3:
print(f'very bad dim: {img.ndim}')
img = imtool.remove_white(img)
(h, w, c) = img.shape
assert(w > 10)
assert(h > 10)
logo_images.append(img)
except Exception as e:
stats['failed'] += 1
print(f'error loading: {d.path}: {e}')
print(stats)
batches = [UnnormalizedBatch(images=logo_images[i:i+BATCH_SIZE])
for i in range(math.floor(len(logo_images)/BATCH_SIZE))]
# We use a single, very fast augmenter here to show that batches
# are only loaded once there is space again in the buffer.
pipeline = pipelines.HUGE
def create_generator(lst):
for b in lst:
print(f"Loading next unaugmented batch...")
yield b
batches_generator = create_generator(batches)
with pipeline.pool(processes=-1, seed=1) as pool:
batches_aug = pool.imap_batches(batches_generator, output_buffer_size=5)
print(f"Requesting next augmented batch...")
for i, batch_aug in enumerate(batches_aug):
idx = list(range(len(batch_aug.images_aug)))
random.shuffle(idx)
for j, d in enumerate(background_images):
img = imtool.remove_white(cv2.imread(d.path))
basename = d.name.replace('.png', '') + f'.{i}.{j}'
anotations = []
for k in range(math.floor(len(batch_aug.images_aug)/3)):
logo = batch_aug.images_aug[(j+k)%len(batch_aug.images_aug)]
try:
img, bb, (w, h) = imtool.mix(img, logo, random.random(), random.random())
anotations.append(f'0 {bb.x/w} {bb.y/h} {bb.w/w} {bb.h/h}')
except AssertionError:
print(f'couldnt process {i}, {j}')
try:
cv2.imwrite(f'{defaults.AUGMENTED_IMAGES_PATH}/{basename}.png', img)
label_path = f"{defaults.AUGMENTED_LABELS_PATH}/{basename}.txt"
with open(label_path, 'a') as f:
f.write('\n'.join(anotations))
except Exception:
print(f'couldnt write image {basename}')
if i < len(batches)-1:
print("Requesting next augmented batch...")