Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import numpy as np
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
9 |
# load the model from disk
|
10 |
-
loaded_model = pickle.load(open("
|
11 |
|
12 |
# Setup SHAP
|
13 |
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
|
@@ -15,9 +15,9 @@ explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
|
|
15 |
# Create the main function for server
|
16 |
# Create the main function for server
|
17 |
|
18 |
-
def main_func(CLIMATE_SCENARIO,
|
19 |
|
20 |
-
new_row = pd.DataFrame.from_dict({'CLIMATE_SCENARIO': CLIMATE_SCENARIO,
|
21 |
'SOCIAL':SOCIAL,'ECONOMY':ECONOMY,'HOUSING_INFRASTRUCTURE':HOUSING_INFRASTRUCTURE,
|
22 |
'COMMUNITY_CAPITAL':COMMUNITY_CAPITAL,'INSTITUTIONAL':INSTITUTIONAL,'ENVIRONMENT':ENVIRONMENT}, orient = 'index').transpose()
|
23 |
|
@@ -58,7 +58,7 @@ with gr.Blocks(title=title) as demo:
|
|
58 |
with gr.Row():
|
59 |
with gr.Column():
|
60 |
CLIMATE_SCENARIO = gr.Slider(label="Climate Scenario", minimum=0, maximum=2, value=0, step=1)
|
61 |
-
EAL_SCORE = gr.Slider(label="EAL Score", minimum=0, maximum=100, value=20, step=5)
|
62 |
SOVI_SCORE = gr.Slider(label="SOVI Score", minimum=0, maximum=100, value=20, step=5)
|
63 |
SOCIAL = gr.Slider(label="Social", minimum=0, maximum=1, value=.5, step=.1)
|
64 |
ECONOMY = gr.Slider(label="Economy", minimum=0, maximum=1, value=.5, step=.1)
|
@@ -74,19 +74,19 @@ with gr.Blocks(title=title) as demo:
|
|
74 |
|
75 |
submit_btn.click(
|
76 |
main_func,
|
77 |
-
[CLIMATE_SCENARIO,
|
78 |
[label,local_plot], api_name="Climate Risk Model"
|
79 |
)
|
80 |
|
81 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
82 |
gr.Examples([[0, 46.23, 63.85, .564, .4703, .3068, .2161, .3623, .6264]],
|
83 |
-
[CLIMATE_SCENARIO,
|
84 |
[label,local_plot], main_func, cache_examples=True, label="Miami-Dade County, Florida")
|
85 |
gr.Examples([[0, 21.05, 15.37, .7231, .5359, .2884, .3828, .4070, .5015]],
|
86 |
-
[CLIMATE_SCENARIO,
|
87 |
[label,local_plot], main_func, cache_examples=True, label="Washington County, Minnesota")
|
88 |
gr.Examples([[0, 6.929, 4.178, .8181, .5221, .3878, .2463, .389,.3921]],
|
89 |
-
[CLIMATE_SCENARIO,
|
90 |
[label,local_plot], main_func, cache_examples=True, label="Falls Church, Virginia")
|
91 |
|
92 |
demo.launch()
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
9 |
# load the model from disk
|
10 |
+
loaded_model = pickle.load(open("XGB_softprob_new_v5.pkl", 'rb'))
|
11 |
|
12 |
# Setup SHAP
|
13 |
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
|
|
|
15 |
# Create the main function for server
|
16 |
# Create the main function for server
|
17 |
|
18 |
+
def main_func(CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT):
|
19 |
|
20 |
+
new_row = pd.DataFrame.from_dict({'CLIMATE_SCENARIO': CLIMATE_SCENARIO,'SOVI_SCORE':SOVI_SCORE,
|
21 |
'SOCIAL':SOCIAL,'ECONOMY':ECONOMY,'HOUSING_INFRASTRUCTURE':HOUSING_INFRASTRUCTURE,
|
22 |
'COMMUNITY_CAPITAL':COMMUNITY_CAPITAL,'INSTITUTIONAL':INSTITUTIONAL,'ENVIRONMENT':ENVIRONMENT}, orient = 'index').transpose()
|
23 |
|
|
|
58 |
with gr.Row():
|
59 |
with gr.Column():
|
60 |
CLIMATE_SCENARIO = gr.Slider(label="Climate Scenario", minimum=0, maximum=2, value=0, step=1)
|
61 |
+
##EAL_SCORE = gr.Slider(label="EAL Score", minimum=0, maximum=100, value=20, step=5)
|
62 |
SOVI_SCORE = gr.Slider(label="SOVI Score", minimum=0, maximum=100, value=20, step=5)
|
63 |
SOCIAL = gr.Slider(label="Social", minimum=0, maximum=1, value=.5, step=.1)
|
64 |
ECONOMY = gr.Slider(label="Economy", minimum=0, maximum=1, value=.5, step=.1)
|
|
|
74 |
|
75 |
submit_btn.click(
|
76 |
main_func,
|
77 |
+
[CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
|
78 |
[label,local_plot], api_name="Climate Risk Model"
|
79 |
)
|
80 |
|
81 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
82 |
gr.Examples([[0, 46.23, 63.85, .564, .4703, .3068, .2161, .3623, .6264]],
|
83 |
+
[CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
|
84 |
[label,local_plot], main_func, cache_examples=True, label="Miami-Dade County, Florida")
|
85 |
gr.Examples([[0, 21.05, 15.37, .7231, .5359, .2884, .3828, .4070, .5015]],
|
86 |
+
[CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
|
87 |
[label,local_plot], main_func, cache_examples=True, label="Washington County, Minnesota")
|
88 |
gr.Examples([[0, 6.929, 4.178, .8181, .5221, .3878, .2463, .389,.3921]],
|
89 |
+
[CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
|
90 |
[label,local_plot], main_func, cache_examples=True, label="Falls Church, Virginia")
|
91 |
|
92 |
demo.launch()
|