Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -7,7 +7,7 @@ import numpy as np 
     | 
|
| 7 | 
         
             
            import matplotlib.pyplot as plt
         
     | 
| 8 | 
         | 
| 9 | 
         
             
            # load the model from disk
         
     | 
| 10 | 
         
            -
            loaded_model = pickle.load(open(" 
     | 
| 11 | 
         | 
| 12 | 
         
             
            # Setup SHAP
         
     | 
| 13 | 
         
             
            explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
         
     | 
| 
         @@ -15,9 +15,9 @@ explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. 
     | 
|
| 15 | 
         
             
            # Create the main function for server
         
     | 
| 16 | 
         
             
            # Create the main function for server
         
     | 
| 17 | 
         | 
| 18 | 
         
            -
            def main_func(CLIMATE_SCENARIO, 
     | 
| 19 | 
         | 
| 20 | 
         
            -
                new_row = pd.DataFrame.from_dict({'CLIMATE_SCENARIO': CLIMATE_SCENARIO, 
     | 
| 21 | 
         
             
                          'SOCIAL':SOCIAL,'ECONOMY':ECONOMY,'HOUSING_INFRASTRUCTURE':HOUSING_INFRASTRUCTURE,
         
     | 
| 22 | 
         
             
                          'COMMUNITY_CAPITAL':COMMUNITY_CAPITAL,'INSTITUTIONAL':INSTITUTIONAL,'ENVIRONMENT':ENVIRONMENT}, orient = 'index').transpose()
         
     | 
| 23 | 
         | 
| 
         @@ -58,7 +58,7 @@ with gr.Blocks(title=title) as demo: 
     | 
|
| 58 | 
         
             
                with gr.Row():        
         
     | 
| 59 | 
         
             
                    with gr.Column():                 
         
     | 
| 60 | 
         
             
                        CLIMATE_SCENARIO = gr.Slider(label="Climate Scenario", minimum=0, maximum=2, value=0, step=1)        
         
     | 
| 61 | 
         
            -
                        EAL_SCORE = gr.Slider(label="EAL Score", minimum=0, maximum=100, value=20, step=5)
         
     | 
| 62 | 
         
             
                        SOVI_SCORE = gr.Slider(label="SOVI Score", minimum=0, maximum=100, value=20, step=5)
         
     | 
| 63 | 
         
             
                        SOCIAL = gr.Slider(label="Social", minimum=0, maximum=1, value=.5, step=.1)
         
     | 
| 64 | 
         
             
                        ECONOMY = gr.Slider(label="Economy", minimum=0, maximum=1, value=.5, step=.1)
         
     | 
| 
         @@ -74,19 +74,19 @@ with gr.Blocks(title=title) as demo: 
     | 
|
| 74 | 
         | 
| 75 | 
         
             
                        submit_btn.click(
         
     | 
| 76 | 
         
             
                            main_func,
         
     | 
| 77 | 
         
            -
                            [CLIMATE_SCENARIO, 
     | 
| 78 | 
         
             
                            [label,local_plot], api_name="Climate Risk Model"
         
     | 
| 79 | 
         
             
                        )
         
     | 
| 80 | 
         | 
| 81 | 
         
             
                gr.Markdown("### Click on any of the examples below to see how it works:")
         
     | 
| 82 | 
         
             
                gr.Examples([[0, 46.23, 63.85, .564, .4703, .3068, .2161, .3623, .6264]], 
         
     | 
| 83 | 
         
            -
                            [CLIMATE_SCENARIO, 
     | 
| 84 | 
         
             
                            [label,local_plot], main_func, cache_examples=True, label="Miami-Dade County, Florida")
         
     | 
| 85 | 
         
             
                gr.Examples([[0, 21.05, 15.37, .7231, .5359, .2884, .3828, .4070, .5015]], 
         
     | 
| 86 | 
         
            -
                            [CLIMATE_SCENARIO, 
     | 
| 87 | 
         
             
                            [label,local_plot], main_func, cache_examples=True, label="Washington County, Minnesota")
         
     | 
| 88 | 
         
             
                gr.Examples([[0, 6.929, 4.178, .8181, .5221, .3878, .2463, .389,.3921]], 
         
     | 
| 89 | 
         
            -
                            [CLIMATE_SCENARIO, 
     | 
| 90 | 
         
             
                            [label,local_plot], main_func, cache_examples=True, label="Falls Church, Virginia")
         
     | 
| 91 | 
         | 
| 92 | 
         
             
            demo.launch()
         
     | 
| 
         | 
|
| 7 | 
         
             
            import matplotlib.pyplot as plt
         
     | 
| 8 | 
         | 
| 9 | 
         
             
            # load the model from disk
         
     | 
| 10 | 
         
            +
            loaded_model = pickle.load(open("XGB_softprob_new_v5.pkl", 'rb'))
         
     | 
| 11 | 
         | 
| 12 | 
         
             
            # Setup SHAP
         
     | 
| 13 | 
         
             
            explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
         
     | 
| 
         | 
|
| 15 | 
         
             
            # Create the main function for server
         
     | 
| 16 | 
         
             
            # Create the main function for server
         
     | 
| 17 | 
         | 
| 18 | 
         
            +
            def main_func(CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT):
         
     | 
| 19 | 
         | 
| 20 | 
         
            +
                new_row = pd.DataFrame.from_dict({'CLIMATE_SCENARIO': CLIMATE_SCENARIO,'SOVI_SCORE':SOVI_SCORE,
         
     | 
| 21 | 
         
             
                          'SOCIAL':SOCIAL,'ECONOMY':ECONOMY,'HOUSING_INFRASTRUCTURE':HOUSING_INFRASTRUCTURE,
         
     | 
| 22 | 
         
             
                          'COMMUNITY_CAPITAL':COMMUNITY_CAPITAL,'INSTITUTIONAL':INSTITUTIONAL,'ENVIRONMENT':ENVIRONMENT}, orient = 'index').transpose()
         
     | 
| 23 | 
         | 
| 
         | 
|
| 58 | 
         
             
                with gr.Row():        
         
     | 
| 59 | 
         
             
                    with gr.Column():                 
         
     | 
| 60 | 
         
             
                        CLIMATE_SCENARIO = gr.Slider(label="Climate Scenario", minimum=0, maximum=2, value=0, step=1)        
         
     | 
| 61 | 
         
            +
                        ##EAL_SCORE = gr.Slider(label="EAL Score", minimum=0, maximum=100, value=20, step=5)
         
     | 
| 62 | 
         
             
                        SOVI_SCORE = gr.Slider(label="SOVI Score", minimum=0, maximum=100, value=20, step=5)
         
     | 
| 63 | 
         
             
                        SOCIAL = gr.Slider(label="Social", minimum=0, maximum=1, value=.5, step=.1)
         
     | 
| 64 | 
         
             
                        ECONOMY = gr.Slider(label="Economy", minimum=0, maximum=1, value=.5, step=.1)
         
     | 
| 
         | 
|
| 74 | 
         | 
| 75 | 
         
             
                        submit_btn.click(
         
     | 
| 76 | 
         
             
                            main_func,
         
     | 
| 77 | 
         
            +
                            [CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
         
     | 
| 78 | 
         
             
                            [label,local_plot], api_name="Climate Risk Model"
         
     | 
| 79 | 
         
             
                        )
         
     | 
| 80 | 
         | 
| 81 | 
         
             
                gr.Markdown("### Click on any of the examples below to see how it works:")
         
     | 
| 82 | 
         
             
                gr.Examples([[0, 46.23, 63.85, .564, .4703, .3068, .2161, .3623, .6264]], 
         
     | 
| 83 | 
         
            +
                            [CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT], 
         
     | 
| 84 | 
         
             
                            [label,local_plot], main_func, cache_examples=True, label="Miami-Dade County, Florida")
         
     | 
| 85 | 
         
             
                gr.Examples([[0, 21.05, 15.37, .7231, .5359, .2884, .3828, .4070, .5015]], 
         
     | 
| 86 | 
         
            +
                            [CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT], 
         
     | 
| 87 | 
         
             
                            [label,local_plot], main_func, cache_examples=True, label="Washington County, Minnesota")
         
     | 
| 88 | 
         
             
                gr.Examples([[0, 6.929, 4.178, .8181, .5221, .3878, .2463, .389,.3921]], 
         
     | 
| 89 | 
         
            +
                            [CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT], 
         
     | 
| 90 | 
         
             
                            [label,local_plot], main_func, cache_examples=True, label="Falls Church, Virginia")
         
     | 
| 91 | 
         | 
| 92 | 
         
             
            demo.launch()
         
     |