mdurst12 commited on
Commit
233276a
·
1 Parent(s): d2d9642

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -7,7 +7,7 @@ import numpy as np
7
  import matplotlib.pyplot as plt
8
 
9
  # load the model from disk
10
- loaded_model = pickle.load(open("XGB_softprob (1).pkl", 'rb'))
11
 
12
  # Setup SHAP
13
  explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
@@ -15,9 +15,9 @@ explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
15
  # Create the main function for server
16
  # Create the main function for server
17
 
18
- def main_func(CLIMATE_SCENARIO, EAL_SCORE,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT):
19
 
20
- new_row = pd.DataFrame.from_dict({'CLIMATE_SCENARIO': CLIMATE_SCENARIO, 'EAL_SCORE':EAL_SCORE,'SOVI_SCORE':SOVI_SCORE,
21
  'SOCIAL':SOCIAL,'ECONOMY':ECONOMY,'HOUSING_INFRASTRUCTURE':HOUSING_INFRASTRUCTURE,
22
  'COMMUNITY_CAPITAL':COMMUNITY_CAPITAL,'INSTITUTIONAL':INSTITUTIONAL,'ENVIRONMENT':ENVIRONMENT}, orient = 'index').transpose()
23
 
@@ -58,7 +58,7 @@ with gr.Blocks(title=title) as demo:
58
  with gr.Row():
59
  with gr.Column():
60
  CLIMATE_SCENARIO = gr.Slider(label="Climate Scenario", minimum=0, maximum=2, value=0, step=1)
61
- EAL_SCORE = gr.Slider(label="EAL Score", minimum=0, maximum=100, value=20, step=5)
62
  SOVI_SCORE = gr.Slider(label="SOVI Score", minimum=0, maximum=100, value=20, step=5)
63
  SOCIAL = gr.Slider(label="Social", minimum=0, maximum=1, value=.5, step=.1)
64
  ECONOMY = gr.Slider(label="Economy", minimum=0, maximum=1, value=.5, step=.1)
@@ -74,19 +74,19 @@ with gr.Blocks(title=title) as demo:
74
 
75
  submit_btn.click(
76
  main_func,
77
- [CLIMATE_SCENARIO,EAL_SCORE,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
78
  [label,local_plot], api_name="Climate Risk Model"
79
  )
80
 
81
  gr.Markdown("### Click on any of the examples below to see how it works:")
82
  gr.Examples([[0, 46.23, 63.85, .564, .4703, .3068, .2161, .3623, .6264]],
83
- [CLIMATE_SCENARIO,EAL_SCORE,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
84
  [label,local_plot], main_func, cache_examples=True, label="Miami-Dade County, Florida")
85
  gr.Examples([[0, 21.05, 15.37, .7231, .5359, .2884, .3828, .4070, .5015]],
86
- [CLIMATE_SCENARIO,EAL_SCORE,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
87
  [label,local_plot], main_func, cache_examples=True, label="Washington County, Minnesota")
88
  gr.Examples([[0, 6.929, 4.178, .8181, .5221, .3878, .2463, .389,.3921]],
89
- [CLIMATE_SCENARIO,EAL_SCORE,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
90
  [label,local_plot], main_func, cache_examples=True, label="Falls Church, Virginia")
91
 
92
  demo.launch()
 
7
  import matplotlib.pyplot as plt
8
 
9
  # load the model from disk
10
+ loaded_model = pickle.load(open("XGB_softprob_new_v5.pkl", 'rb'))
11
 
12
  # Setup SHAP
13
  explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
 
15
  # Create the main function for server
16
  # Create the main function for server
17
 
18
+ def main_func(CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT):
19
 
20
+ new_row = pd.DataFrame.from_dict({'CLIMATE_SCENARIO': CLIMATE_SCENARIO,'SOVI_SCORE':SOVI_SCORE,
21
  'SOCIAL':SOCIAL,'ECONOMY':ECONOMY,'HOUSING_INFRASTRUCTURE':HOUSING_INFRASTRUCTURE,
22
  'COMMUNITY_CAPITAL':COMMUNITY_CAPITAL,'INSTITUTIONAL':INSTITUTIONAL,'ENVIRONMENT':ENVIRONMENT}, orient = 'index').transpose()
23
 
 
58
  with gr.Row():
59
  with gr.Column():
60
  CLIMATE_SCENARIO = gr.Slider(label="Climate Scenario", minimum=0, maximum=2, value=0, step=1)
61
+ ##EAL_SCORE = gr.Slider(label="EAL Score", minimum=0, maximum=100, value=20, step=5)
62
  SOVI_SCORE = gr.Slider(label="SOVI Score", minimum=0, maximum=100, value=20, step=5)
63
  SOCIAL = gr.Slider(label="Social", minimum=0, maximum=1, value=.5, step=.1)
64
  ECONOMY = gr.Slider(label="Economy", minimum=0, maximum=1, value=.5, step=.1)
 
74
 
75
  submit_btn.click(
76
  main_func,
77
+ [CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
78
  [label,local_plot], api_name="Climate Risk Model"
79
  )
80
 
81
  gr.Markdown("### Click on any of the examples below to see how it works:")
82
  gr.Examples([[0, 46.23, 63.85, .564, .4703, .3068, .2161, .3623, .6264]],
83
+ [CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
84
  [label,local_plot], main_func, cache_examples=True, label="Miami-Dade County, Florida")
85
  gr.Examples([[0, 21.05, 15.37, .7231, .5359, .2884, .3828, .4070, .5015]],
86
+ [CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
87
  [label,local_plot], main_func, cache_examples=True, label="Washington County, Minnesota")
88
  gr.Examples([[0, 6.929, 4.178, .8181, .5221, .3878, .2463, .389,.3921]],
89
+ [CLIMATE_SCENARIO,SOVI_SCORE,SOCIAL,ECONOMY,HOUSING_INFRASTRUCTURE,COMMUNITY_CAPITAL,INSTITUTIONAL,ENVIRONMENT],
90
  [label,local_plot], main_func, cache_examples=True, label="Falls Church, Virginia")
91
 
92
  demo.launch()