import torch from transformers import pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-base", device=device ) # %% def translate(audio): outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"}) return outputs["text"] # %% from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl") model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # %% model.to(device) vocoder.to(device) # %% from datasets import load_dataset, Audio embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # %% def synthesise(text): inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech( inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder ) return speech.cpu() # %% import numpy as np target_dtype = np.int16 max_range = np.iinfo(target_dtype).max def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) return 16000, synthesised_speech # %% import gradio as gr demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()