Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,65 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
import torch
|
4 |
-
from
|
5 |
|
6 |
-
|
|
|
|
|
|
|
7 |
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
19 |
|
20 |
-
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
|
|
28 |
|
29 |
def synthesise(text):
|
30 |
inputs = processor(text=text, return_tensors="pt")
|
31 |
-
speech = model.generate_speech(
|
|
|
|
|
32 |
return speech.cpu()
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
37 |
synthesised_speech = synthesise(translated_text)
|
38 |
-
synthesised_speech = (synthesised_speech.numpy() *
|
39 |
return 16000, synthesised_speech
|
40 |
|
41 |
|
42 |
-
|
43 |
-
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
45 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
|
47 |
-
|
48 |
-
"""
|
49 |
|
50 |
demo = gr.Blocks()
|
51 |
|
@@ -53,17 +67,12 @@ mic_translate = gr.Interface(
|
|
53 |
fn=speech_to_speech_translation,
|
54 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
55 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
56 |
-
title=title,
|
57 |
-
description=description,
|
58 |
)
|
59 |
|
60 |
file_translate = gr.Interface(
|
61 |
fn=speech_to_speech_translation,
|
62 |
inputs=gr.Audio(source="upload", type="filepath"),
|
63 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
64 |
-
examples=[["./example.wav"]],
|
65 |
-
title=title,
|
66 |
-
description=description,
|
67 |
)
|
68 |
|
69 |
with demo:
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
5 |
+
pipe = pipeline(
|
6 |
+
"automatic-speech-recognition", model="openai/whisper-base", device=device
|
7 |
+
)
|
8 |
|
9 |
+
# %%
|
10 |
|
11 |
+
def translate(audio):
|
12 |
+
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
13 |
+
return outputs["text"]
|
14 |
+
|
15 |
+
# %%
|
16 |
|
17 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
|
|
18 |
|
|
|
19 |
processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
20 |
|
21 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
22 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
23 |
|
24 |
+
# %%
|
|
|
25 |
|
26 |
+
model.to(device)
|
27 |
+
vocoder.to(device)
|
28 |
|
29 |
+
# %%
|
30 |
+
|
31 |
+
from datasets import load_dataset, Audio
|
32 |
+
|
33 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
34 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
35 |
|
36 |
+
# %%
|
37 |
|
38 |
def synthesise(text):
|
39 |
inputs = processor(text=text, return_tensors="pt")
|
40 |
+
speech = model.generate_speech(
|
41 |
+
inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder
|
42 |
+
)
|
43 |
return speech.cpu()
|
44 |
|
45 |
+
# %%
|
46 |
+
|
47 |
+
import numpy as np
|
48 |
+
|
49 |
+
target_dtype = np.int16
|
50 |
+
max_range = np.iinfo(target_dtype).max
|
51 |
+
|
52 |
|
53 |
def speech_to_speech_translation(audio):
|
54 |
translated_text = translate(audio)
|
55 |
synthesised_speech = synthesise(translated_text)
|
56 |
+
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
|
57 |
return 16000, synthesised_speech
|
58 |
|
59 |
|
60 |
+
# %%
|
|
|
|
|
|
|
61 |
|
62 |
+
import gradio as gr
|
|
|
63 |
|
64 |
demo = gr.Blocks()
|
65 |
|
|
|
67 |
fn=speech_to_speech_translation,
|
68 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
69 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
|
|
|
|
70 |
)
|
71 |
|
72 |
file_translate = gr.Interface(
|
73 |
fn=speech_to_speech_translation,
|
74 |
inputs=gr.Audio(source="upload", type="filepath"),
|
75 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
|
|
|
|
|
|
76 |
)
|
77 |
|
78 |
with demo:
|