Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline | |
# Load fine-tuned model and tokenizer from Hugging Face Hub | |
model_name = "AICodexLab/answerdotai-ModernBERT-base-ai-detector" | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# Use pipeline for text classification | |
classifier = pipeline( | |
"text-classification", | |
model=model, | |
tokenizer=tokenizer, | |
device=0 if torch.cuda.is_available() else -1, | |
) | |
# Define function for real-time AI text detection | |
def predict_ai_text(input_text): | |
result = classifier(input_text) | |
label = "AI-Generated" if result[0]["label"] == "LABEL_1" else "Human-Written" | |
confidence = np.round(result[0]["score"], 3) | |
return f"{label} (Confidence: {confidence})" | |
# Create Gradio interface | |
app = gr.Interface( | |
fn=predict_ai_text, | |
inputs=gr.Textbox(lines=5, placeholder="Enter your text here..."), | |
outputs=gr.Textbox(), | |
title="AI Text Detector", | |
description="Detect whether a given text is AI-generated or human-written.", | |
allow_flagging="never", | |
) | |
# Launch app | |
if __name__ == "__main__": | |
app.launch() | |