File size: 5,008 Bytes
c1e96e4 7c99d61 93b1dd3 7c99d61 8da7c99 3f83581 7f314ef 8da7c99 3f83581 c1e96e4 a362e37 c1e96e4 7632898 7c99d61 e32709c bde8ebb 0ae2022 4f1e643 c1e96e4 a7848ca 7c99d61 4b98ce6 7c99d61 0b16e1e 5cb2195 7c99d61 772d708 350198c d0dc3c5 7c99d61 d0dc3c5 772d708 7c99d61 f904385 e32709c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
import subprocess
import os
import json
import uuid
import requests
from pypipertts import PyPiper
pp=PyPiper()
def init():
key_list=pp.key_list
return(gr.update(label="Voice",choices=key_list,value="en_US-joe-medium",interactive=True))
def load_mod(instr="en_US-joe-medium"):
load_mes=gr.Info(f"""Loading Model...<br>{instr}""",duration=2)
pp.load_mod(instr=instr)
with open(pp.json_ob,'r') as f:
#json_ob=json.dumps(f.read(),indent=4)
json_ob=f.read()
load_mes=gr.Info(f"Model Loaded<br>{instr}",duration=2)
return json_ob
def save_set(model,length,noise,width,sen_pause):
if not os.path.isdir(f'{os.getcwd()}/saved'):
os.mkdir(f'{os.getcwd()}/saved')
set_json={"model":model,"length":length,"noise":noise,"width":width,"pause":sen_pause}
file_name=f'{model}__{length}__{noise}__{width}__{sen_pause}'.replace(".","_")
with open(f'{os.getcwd()}/saved/{file_name}.json','w') as file:
file.write(json.dumps(set_json,indent=4))
file.close()
return(f'{os.getcwd()}/saved/{file_name}.json')
def load_set(set_file):
with open(set_file,'r') as file:
set_json=json.loads(file.read())
file.close()
return(gr.update(value=set_json['model']),gr.update(value=set_json['length']),
gr.update(value=set_json['noise']),gr.update(value=set_json['width']),
gr.update(value=set_json['pause']))
txt="""PiperTTS is a powerful text-to-speech TTS node designed to convert written text into high-quality spoken audio. This node leverages advanced voice synthesis models to generate natural-sounding speech, making it an invaluable tool for AI developers looking to add a vocal element to their projects."""
def exp1():
exp_file=f"./example/en_US-libritts-high__1_4__0_3__0_2__1.json"
return(gr.update(value=txt),gr.update(value=exp_file))
def exp2():
exp_file=f"./example/en_US-ryan-high__1__0_6__0_01__1.json"
return(gr.update(value=txt),gr.update(value=exp_file))
def exp3():
exp_file=f"./example/en_US-ljspeech-high__1__1__0_5__1.json"
return(gr.update(value=txt),gr.update(value=exp_file))
def button_on(stream):
if stream==True:
return gr.update(interactive=True,visible=True),gr.update(interactive=False,visible=False)
if stream==False:
return gr.update(interactive=False,visible=False),gr.update(interactive=True,visible=True)
def clear_aud():
return None
with gr.Blocks() as b:
gr.HTML("""<h1 style='font-size:xxx-large;font-weight:900;'>Piper Fast TTS</h1>
<h4>Piper: <a href='https://github.com/rhasspy/piper' target='_blank'>https://github.com/rhasspy/piper</a></h4>
<h4>PyPiperTTS: <a href='https://github.com/broadfield-dev/PyPiperTTS' target='_blank'>https://github.com/broadfield-dev/PyPiperTTS</a></h4>
""")
with gr.Row():
with gr.Column(scale=2):
in_txt=gr.Textbox(label="Text",lines=10)
names=gr.Dropdown()
with gr.Row():
stream_btn=gr.Button("Stream",interactive=True,visible=True)
sub_btn=gr.Button(interactive=False,visible=False)
cancel_btn=gr.Button("Stop")
out_aud=gr.Audio(streaming=True, autoplay=True)
with gr.Column(scale=1):
with gr.Accordion("Control"):
stream=gr.Checkbox(label="Stream",info="Streaming is fast, but lower quality",value=True,interactive=True)
length=gr.Slider(label="Length", minimum=0.01, maximum=10.0, value=1)
# noise=gr.Slider(label="Noise", minimum=0.01, maximum=3.0, value=1)
noise=1
# width=gr.Slider(label="Noise Width", minimum=0.01, maximum=3.0, value=1)
width=1
# sen_pause=gr.Slider(label="Sentence Pause", minimum=0.1, maximum=10.0, value=1)
sen_pause=1
with gr.Tab("Save Settings"):
save_btn=gr.Button("Save")
save_file=gr.File()
with gr.Tab("Load Settings"):
load_file=gr.File()
with gr.Column(scale=1):
with gr.Accordion("Model Config"):
json_ob=gr.JSON(label="JSON")
f1=stream.change(button_on,stream,[stream_btn,sub_btn])
# f2=save_btn.click(save_set,[names,length,noise,width,sen_pause],save_file)
f3=load_file.change(load_set,load_file,[names,length,noise,width,sen_pause])
# f4=names.change(load_mod,names,json_ob).then(clear_aud,None,out_aud)
f5=stream_btn.click(clear_aud,None,out_aud)
f6=stream_btn.click(pp.stream_tts,[in_txt,names,length,noise,width,sen_pause],out_aud)
f7=sub_btn.click(clear_aud,None,out_aud)
f8=sub_btn.click(pp.tts,[in_txt,names,length,noise,width,sen_pause],out_aud)
# cancel_btn.click(None,None,None,cancels=[f1,f2,f3,f4,f5,f6,f7,f8])
cancel_btn.click(None,None,None,cancels=[f1,f3,f5,f6,f7,f8])
b.load(init,None,names)
b.queue(default_concurrency_limit=20).launch(max_threads=40) |