File size: 5,198 Bytes
c1e96e4 7c99d61 93b1dd3 7c99d61 8da7c99 3f83581 7f314ef 8da7c99 3f83581 c1e96e4 a362e37 c1e96e4 7632898 7c99d61 e32709c e7f15ba 0ae2022 4f1e643 c1e96e4 a7848ca 7c99d61 e7f15ba 7c99d61 e4743b6 68f8ecb e4743b6 7c99d61 e7f15ba 99b0318 3aa3663 7c99d61 99b0318 3aa3663 99b0318 f904385 e32709c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
import subprocess
import os
import json
import uuid
import requests
from pypipertts import PyPiper
pp=PyPiper()
def init():
key_list=pp.key_list
return(gr.update(label="Voice",choices=key_list,value="en_US-joe-medium",interactive=True))
def load_mod(instr="en_US-joe-medium"):
load_mes=gr.Info(f"""Loading Model...<br>{instr}""",duration=2)
pp.load_mod(instr=instr)
with open(pp.json_ob,'r') as f:
#json_ob=json.dumps(f.read(),indent=4)
json_ob=f.read()
load_mes=gr.Info(f"Model Loaded<br>{instr}",duration=2)
return json_ob
def save_set(model,length,noise,width,sen_pause):
if not os.path.isdir(f'{os.getcwd()}/saved'):
os.mkdir(f'{os.getcwd()}/saved')
set_json={"model":model,"length":length,"noise":noise,"width":width,"pause":sen_pause}
file_name=f'{model}__{length}__{noise}__{width}__{sen_pause}'.replace(".","_")
with open(f'{os.getcwd()}/saved/{file_name}.json','w') as file:
file.write(json.dumps(set_json,indent=4))
file.close()
return(f'{os.getcwd()}/saved/{file_name}.json')
def load_set(set_file):
with open(set_file,'r') as file:
set_json=json.loads(file.read())
file.close()
return(gr.update(value=set_json['model']),gr.update(value=set_json['length']),
gr.update(value=set_json['noise']),gr.update(value=set_json['width']),
gr.update(value=set_json['pause']))
txt="""PiperTTS is a powerful text-to-speech TTS node designed to convert written text into high-quality spoken audio. This node leverages advanced voice synthesis models to generate natural-sounding speech, making it an invaluable tool for AI developers looking to add a vocal element to their projects."""
def exp1():
exp_file=f"./example/en_US-libritts-high__1_4__0_3__0_2__1.json"
return(gr.update(value=txt),gr.update(value=exp_file))
def exp2():
exp_file=f"./example/en_US-ryan-high__1__0_6__0_01__1.json"
return(gr.update(value=txt),gr.update(value=exp_file))
def exp3():
exp_file=f"./example/en_US-ljspeech-high__1__1__0_5__1.json"
return(gr.update(value=txt),gr.update(value=exp_file))
def button_on(stream):
if stream==True:
return gr.update(interactive=True,visible=True),gr.update(interactive=False,visible=False)
if stream==False:
return gr.update(interactive=False,visible=False),gr.update(interactive=True,visible=True)
def clear_aud():
return None
with gr.Blocks(theme="Hev832/Applio-Theme") as b:
gr.HTML("""<h1 style='font-size:xxx-large;font-weight:900;'>Piper Fast TTS</h1>
<h4>Piper: <a href='https://github.com/rhasspy/piper' target='_blank'>https://github.com/rhasspy/piper</a></h4>
<h4>PyPiperTTS: <a href='https://github.com/broadfield-dev/PyPiperTTS' target='_blank'>https://github.com/broadfield-dev/PyPiperTTS</a></h4>
""")
with gr.Row():
with gr.Column(scale=2):
in_txt=gr.Textbox(label="Text",lines=10)
names=gr.Dropdown()
with gr.Row():
stream_btn=gr.Button("Stream",interactive=True,visible=True)
sub_btn=gr.Button(interactive=False,visible=False)
cancel_btn=gr.Button("Stop")
out_aud=gr.Audio(streaming=True, autoplay=True)
with gr.Column(scale=1):
with gr.Accordion("Control"):
stream=gr.Checkbox(label="Stream",info="Streaming is fast, but lower quality",value=True,interactive=True)
length=gr.Slider(label="Length", minimum=0.01, maximum=10.0, value=1)
noise=gr.Slider(label="Noise", minimum=0.01, maximum=3.0, value=1)
width=gr.Slider(label="Noise Width", minimum=0.01, maximum=3.0, value=1)
sen_pause=gr.Slider(label="Sentence Pause", minimum=0.1, maximum=10.0, value=1)
with gr.Tab("Save Settings"):
save_btn=gr.Button("Save")
save_file=gr.File()
with gr.Tab("Load Settings"):
load_file=gr.File()
# with gr.Column(scale=1):
# expbtn1=gr.Button("Example 1").click(exp1,None,[in_txt,load_file])
# expbtn2=gr.Button("Example 2").click(exp2,None,[in_txt,load_file])
# expbtn3=gr.Button("Example 3").click(exp3,None,[in_txt,load_file])
# with gr.Accordion("Model Config"):
# json_ob=gr.JSON(label="JSON")
f1=stream.change(button_on,stream,[stream_btn,sub_btn])
f2=save_btn.click(save_set,[names,length,noise,width,sen_pause],save_file)
# f3=load_file.change(load_set,load_file,[names,length,noise,width,sen_pause])
# f4=names.change(load_mod,names,json_ob).then(clear_aud,None,out_aud)
f5=stream_btn.click(clear_aud,None,out_aud)
f6=stream_btn.click(pp.stream_tts,[in_txt,names,length,noise,width,sen_pause],out_aud)
f7=sub_btn.click(clear_aud,None,out_aud)
f8=sub_btn.click(pp.tts,[in_txt,names,length,noise,width,sen_pause],out_aud)
# cancel_btn.click(None,None,None,cancels=[f1,f2,f3,f4,f5,f6,f7,f8])
cancel_btn.click(None,None,None,cancels=[f1,f2,f5,f6,f7,f8])
b.load(init,None,names)
b.queue(default_concurrency_limit=20).launch(max_threads=40) |